On the Asymptotic Average Number of Efficient Vertices in Multiple Objective Linear Programming
暂无分享,去创建一个
[1] L. Nachbin,et al. The Haar integral , 1965 .
[2] Nimrod Megiddo,et al. A simplex algorithm whose average number of steps is bounded between two quadratic functions of the smaller dimension , 1985, JACM.
[3] Karl-Heinz Küfer. On the variance of the number of pivot steps required by the simplex algorithm , 1995, Math. Methods Oper. Res..
[4] H. Carnal. Die konvexe Hülle von n rotationssymmetrisch verteilten Punkten , 1970 .
[5] Karl Heinz Borgwardt,et al. Some Distribution-Independent Results About the Asymptotic Order of the Average Number of Pivot Steps of the Simplex Method , 1982, Math. Oper. Res..
[6] Sancho E. Berenguer,et al. Random Linear Programs. , 1981 .
[7] Robert L. Smith,et al. Random polytopes: Their definition, generation and aggregate properties , 1982, Math. Program..
[8] M. Zeleny. Linear Multiobjective Programming , 1974 .
[9] K. Borgwardt. The Simplex Method: A Probabilistic Analysis , 1986 .
[10] J. Stoer,et al. Convexity and Optimization in Finite Dimensions I , 1970 .
[11] Karl-Heinz Borgwardt,et al. The Average number of pivot steps required by the Simplex-Method is polynomial , 1982, Z. Oper. Research.