Estimation of distribution algorithms in logistics : Analysis, design, and application

This thesis considers the analysis, design and application of Estimation of Distribution Algorithms (EDA) in Logistics. It approaches continouos nonlinear optimization problems (standard test problems and stochastic transportation problems) as well as location problems, strategic safety stock placement problems and lotsizing problems. The thesis adds to the existing literature by proposing theoretical advances for continuous EDAs and practical applications of discrete EDAs. Thus, it should be of interest for researchers from evolutionary computation, as well as practitioners that are in need of efficient algorithms for the above mentioned problems.

[1]  Michèle Sebag,et al.  Extending Population-Based Incremental Learning to Continuous Search Spaces , 1998, PPSN.

[2]  George L. Nemhauser,et al.  The uncapacitated facility location problem , 1990 .

[3]  Edward P. C. Kao,et al.  A Multi-Product Dynamic Lot-Size Model with Individual and Joint Set-up Costs , 1979, Oper. Res..

[4]  David E. Goldberg,et al.  Multi-objective bayesian optimization algorithm , 2002 .

[5]  Rajan Batta,et al.  On the use of genetic algorithms to solve location problems , 2002, Comput. Oper. Res..

[6]  Kaj Holmberg,et al.  A production-transportation problem with stochastic demand and concave production costs , 1999, Math. Program..

[7]  P. Bosman,et al.  Adapted Maximum-Likelihood Gaussian Models for Numerical Optimization with Continuous EDAs , 2007 .

[8]  Dr. Zbigniew Michalewicz,et al.  How to Solve It: Modern Heuristics , 2004 .

[9]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[10]  J. Beasley An algorithm for solving large capacitated warehouse location problems , 1988 .

[11]  S. Elmaghraby Allocation under Uncertainty when the Demand has Continuous D.F. , 1960 .

[12]  Franz Rothlauf,et al.  The correlation-triggered adaptive variance scaling IDEA , 2006, GECCO.

[13]  Steffen L. Lauritzen,et al.  Graphical models in R , 1996 .

[14]  Fernando G. Lobo,et al.  Extended Compact Genetic Algorithm in C , 1999 .

[15]  Cláudio F. Lima,et al.  Parameter-Less Optimization with the Extended Compact Genetic Algorithm and Iterated Local Search , 2004, GECCO.

[16]  Peter Grünwald,et al.  A tutorial introduction to the minimum description length principle , 2004, ArXiv.

[17]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[18]  Martin V. Butz,et al.  Substructural Neighborhoods for Local Search in the Bayesian Optimization Algorithm , 2006, PPSN.

[19]  David E. Goldberg,et al.  Multiobjective hBOA, clustering, and scalability , 2005, GECCO '05.

[20]  Peter A. N. Bosman,et al.  Matching inductive search bias and problem structure in continuous Estimation-of-Distribution Algorithms , 2008, Eur. J. Oper. Res..

[21]  Franz Rothlauf,et al.  Representations for genetic and evolutionary algorithms , 2002, Studies in Fuzziness and Soft Computing.

[22]  Dirk Thierens,et al.  New IDEAs and more ICE by learning and using unconditional permutation factorizations , 2001 .

[23]  Andreas Drexl,et al.  Facility location models for distribution system design , 2005, Eur. J. Oper. Res..

[24]  Petros Koumoutsakos,et al.  Learning Probability Distributions in Continuous Evolutionary Algorithms - a Comparative Review , 2004, Nat. Comput..

[25]  David E. Goldberg,et al.  The Design of Innovation: Lessons from and for Competent Genetic Algorithms , 2002 .

[26]  Stefan Minner,et al.  Linkage in warehouse location problems: The numbering effect and its influence on evolutionary algorithms , 2007 .

[27]  Paul A. Viola,et al.  MIMIC: Finding Optima by Estimating Probability Densities , 1996, NIPS.

[28]  Byoung-Tak Zhang,et al.  Evolutionary optimization by distribution estimation with mixtures of factor analyzers , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[29]  Ludo Gelders,et al.  Lot sizing under dynamic demand conditions: A review , 1984 .

[30]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[31]  C. Reeves,et al.  Properties of fitness functions and search landscapes , 2001 .

[32]  J. A. Lozano,et al.  Estimation of Distribution Algorithms: A New Tool for Evolutionary Computation , 2001 .

[33]  J. Beasley Lagrangean heuristics for location problems , 1993 .

[34]  Yuri Kochetov,et al.  Computationally Difficult Instances for the Uncapacitated Facility Location Problem , 2005 .

[35]  Martin Pelikan,et al.  Parameter-Less Hierarchical BOA , 2004, GECCO.

[36]  Ekaterina. Lesnaia Optimizing Safety Stock Placement in General Network Supply Chains , 2004 .

[37]  Pedro Larrañaga,et al.  Optimization in Continuous Domains by Learning and Simulation of Gaussian Networks , 2000 .

[38]  Mario Giacobini,et al.  Applications of Evolutionary Computing , 2009, Lecture Notes in Computer Science.

[39]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[40]  Riccardo Poli,et al.  New ideas in optimization , 1999 .

[41]  Martin Hoefer,et al.  Performance of heuristic and approximation algorithms for the uncapacitated facility location problem , 2002 .

[42]  Jens Jägersküpper,et al.  Rigorous runtime analysis of a (μ+1)ES for the sphere function , 2005, GECCO '05.

[43]  H. Mühlenbein,et al.  From Recombination of Genes to the Estimation of Distributions I. Binary Parameters , 1996, PPSN.

[44]  Mohammad Reza Meybodi,et al.  A Study on the Global Convergence Time Complexity of Estimation of Distribution Algorithms , 2005, RSFDGrC.

[45]  Byoung-Tak Zhang,et al.  Bayesian evolutionary algorithms for continuous function optimization , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[46]  Marcus Gallagher,et al.  Population-Based Continuous Optimization, Probabilistic Modelling and Mean Shift , 2005, Evolutionary Computation.

[47]  Fred W. Glover,et al.  Tabu Search , 1997, Handbook of Heuristics.

[48]  David F. Pyke,et al.  Inventory management and production planning and scheduling , 1998 .

[49]  Dirk Thierens,et al.  Mixing in Genetic Algorithms , 1993, ICGA.

[50]  L. Cooper,et al.  Stochastic transportation problems and other newtork related convex problems , 1977 .

[51]  Heinz Mühlenbein,et al.  FDA -A Scalable Evolutionary Algorithm for the Optimization of Additively Decomposed Functions , 1999, Evolutionary Computation.

[52]  Albert P. M. Wagelmans,et al.  Economic Lot Sizing: An O(n log n) Algorithm That Runs in Linear Time in the Wagner-Whitin Case , 1992, Oper. Res..

[53]  Andreas Klose,et al.  Standortplanung in distributiven Systemen , 2001 .

[54]  Marco Dorigo,et al.  The ant colony optimization meta-heuristic , 1999 .

[55]  David E. Goldberg,et al.  Bayesian optimization algorithm, decision graphs, and Occam's razor , 2001 .

[56]  Dev Joneja,et al.  The Joint Replenishment Problem: New Heuristics and Worst Case Performance Bounds , 1990, Oper. Res..

[57]  Bo Yuan,et al.  A Mathematical Modelling Technique for the Analysis of the Dynamics of a Simple Continuous EDA , 2006, 2006 IEEE International Conference on Evolutionary Computation.

[58]  Dirk Thierens,et al.  The balance between proximity and diversity in multiobjective evolutionary algorithms , 2003, IEEE Trans. Evol. Comput..

[59]  David R. Anderson,et al.  Model Selection and Multimodel Inference , 2003 .

[60]  Juan Julián Merelo Guervós,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[61]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[62]  F. Mandl,et al.  Statistical Physics, 2nd Edition , 1988 .

[63]  Jiri Ocenasek,et al.  Estimation of Distribution Algorithm for Mixed Continuous-Discrete Optimization , 2002 .

[64]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[65]  Rajkumar Roy,et al.  Advances in Soft Computing: Engineering Design and Manufacturing , 1998 .

[66]  Edmondo A. Minisci,et al.  MOPED: A Multi-objective Parzen-Based Estimation of Distribution Algorithm for Continuous Problems , 2003, EMO.

[67]  A. Williams A Stochastic Transportation Problem , 1963 .

[68]  Zvi Drezner,et al.  Facility location - applications and theory , 2001 .

[69]  Martin Pelikan,et al.  Marginal Distributions in Evolutionary Algorithms , 2007 .

[70]  W. Zijm,et al.  European Journal of Operational Research Materials Coordination in Stochastic Multi-echelon Systems , 2022 .

[71]  Peter A. N. Bosman,et al.  Convergence phases, variance trajectories, and runtime analysis of continuous EDAs , 2007, GECCO '07.

[72]  Jozef Kratica,et al.  SOLVING THE UNCAPACITATED WAREHOUSE LOCATION PROBLEM BY SGA WITH ADD-HEURISTIC , 1998 .

[73]  Kenneth F. Simpson In-Process Inventories , 1958 .

[74]  Jens Gottlieb,et al.  Evolutionary Computation in Combinatorial Optimization , 2006, Lecture Notes in Computer Science.

[75]  David E. Goldberg,et al.  Real-Coded Bayesian Optimization Algorithm: Bringing the Strength of BOA into the Continuous World , 2004, GECCO.

[76]  Dong-Yeon Cho,et al.  Continuous estimation of distribution algorithms with probabilistic principal component analysis , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[77]  Harvey M. Wagner,et al.  Dynamic Version of the Economic Lot Size Model , 2004, Manag. Sci..

[78]  David E. Goldberg,et al.  Bayesian Optimization Algorithm: From Single Level to Hierarchy , 2002 .

[79]  D. Goldberg,et al.  Escaping hierarchical traps with competent genetic algorithms , 2001 .

[80]  Peer Witten,et al.  Stochastische Transportprobleme , 1978, Z. Oper. Research.

[81]  M. Khouja The single-period (news-vendor) problem: literature review and suggestions for future research , 1999 .

[82]  Gilbert Syswerda,et al.  Simulated Crossover in Genetic Algorithms , 1992, FOGA.

[83]  Wolfgang Domschke,et al.  Logistik: Transport: Grundlagen, lineare Transport- und Umladeprobleme , 2007 .

[84]  Hitoshi Iba,et al.  Reinforcement Learning Estimation of Distribution Algorithm , 2003, GECCO.

[85]  L. Qi Forest iteration method for stochastic transportation problem , 1985 .

[86]  Stefan Minner,et al.  Dynamic programming algorithms for multi-stage safety stock optimization , 1997 .

[87]  Dirk Thierens,et al.  Linkage Information Processing In Distribution Estimation Algorithms , 1999, GECCO.

[88]  Bernhard Fleischmann,et al.  Distribution and Transport Planning , 2008 .

[89]  Pedro Larrañaga,et al.  Prototype Selection and Feature Subset Selection by Estimation of Distribution Algorithms. A Case Study in the Survival of Cirrhotic Patients Treated with TIPS , 2001, AIME.

[90]  Herbert Meyr,et al.  Planning Hierarchy, Modeling and Advanced Planning Systems , 2003, Supply Chain Management.

[91]  U. Wemmerlöv,et al.  A comparison of discrete, single stage lot-sizing heuristics with special emphasis on rules based on the marginal cost principle , 1982 .

[92]  Kaj Holmberg,et al.  Efficient decomposition and linearization methods for the stochastic transportation problem , 1995, Comput. Optim. Appl..

[93]  David E. Goldberg,et al.  Hierarchical BOA Solves Ising Spin Glasses and MAXSAT , 2003, GECCO.

[94]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[95]  David A. Schilling,et al.  Network distance characteristics that affect computational effort in p-median location problems , 2000, Eur. J. Oper. Res..

[96]  S. Minner Strategic Safety Stocks in Supply Chains , 2000 .

[97]  Marco Laumanns,et al.  Bayesian Optimization Algorithms for Multi-objective Optimization , 2002, PPSN.

[98]  Dirk Thierens,et al.  Crossing the road to efficient IDEAs for permutation problems , 2001 .

[99]  S. Baluja,et al.  Using Optimal Dependency-Trees for Combinatorial Optimization: Learning the Structure of the Search Space , 1997 .

[100]  David E. Goldberg,et al.  Learning Linkage , 1996, FOGA.

[101]  Diptesh Ghosh,et al.  Neighborhood search heuristics for the uncapacitated facility location problem , 2003, Eur. J. Oper. Res..

[102]  David Simchi-Levi,et al.  Inventory placement in acyclic supply chain networks , 2006, Oper. Res. Lett..

[103]  Nir Friedman,et al.  Learning Bayesian Networks with Local Structure , 1996, UAI.

[104]  Petros Koumoutsakos,et al.  A Mixed Bayesian Optimization Algorithm with Variance Adaptation , 2004, PPSN.

[105]  J. Krarup,et al.  The simple plant location problem: Survey and synthesis , 1983 .

[106]  Byoung-Tak Zhang,et al.  Evolutionary Continuous Optimization by Distribution Estimation with Variational Bayesian Independent Component Analyzers Mixture Model , 2004, PPSN.

[107]  Rafal Salustowicz,et al.  Probabilistic Incremental Program Evolution , 1997, Evolutionary Computation.

[108]  S. Selcuk Erenguc,et al.  Multiproduct dynamic lot-sizing model with coordinated replenishments , 1988 .

[109]  Heinz Mühlenbein,et al.  Schemata, Distributions and Graphical Models in Evolutionary Optimization , 1999, J. Heuristics.

[110]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .

[111]  J. Kratica,et al.  Fine Grained Tournament Selection for the Simple Plant Location Problem , 2002 .

[112]  Jozef Kratica,et al.  Solving the simple plant location problem by genetic algorithm , 2001, RAIRO Oper. Res..

[113]  David Heckerman,et al.  Learning Bayesian Networks: A Unification for Discrete and Gaussian Domains , 1995, UAI.

[114]  David E. Goldberg,et al.  Sporadic model building for efficiency enhancement of hierarchical BOA , 2006, GECCO '06.

[115]  Manuel López-Ibáñez,et al.  Ant colony optimization , 2010, GECCO '10.

[116]  Kalyanmoy Deb,et al.  Analyzing Deception in Trap Functions , 1992, FOGA.

[117]  Dirk Thierens,et al.  Multi-objective optimization with diversity preserving mixture-based iterated density estimation evolutionary algorithms , 2002, Int. J. Approx. Reason..

[118]  Martin V. Butz,et al.  Hierarchical BOA on random decomposable problems , 2006, GECCO '06.

[119]  Julian F. Miller,et al.  Genetic and Evolutionary Computation — GECCO 2003 , 2003, Lecture Notes in Computer Science.

[120]  K. Jörnsten,et al.  Cross decomposition applied to the stochastic transportation problem , 1984 .

[121]  Martin Pelikan,et al.  Scalable Optimization via Probabilistic Modeling: From Algorithms to Applications (Studies in Computational Intelligence) , 2006 .

[122]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[123]  Panos M. Pardalos,et al.  Constrained Global Optimization: Algorithms and Applications , 1987, Lecture Notes in Computer Science.

[124]  Bernd Freisleben,et al.  Fitness landscapes and memetic algorithm design , 1999 .

[125]  Pedro Larrañaga,et al.  Solving the Traveling Salesman Problem with EDAs , 2002, Estimation of Distribution Algorithms.

[126]  D. Goldberg,et al.  Probabilistic Model Building and Competent Genetic Programming , 2003 .

[127]  Fernando G. Lobo,et al.  A parameter-less genetic algorithm , 1999, GECCO.

[128]  Dirk Thierens,et al.  Scalability Problems of Simple Genetic Algorithms , 1999, Evolutionary Computation.

[129]  L. Kallel,et al.  Theoretical Aspects of Evolutionary Computing , 2001, Natural Computing Series.

[130]  Marcus Gallagher,et al.  Real-valued Evolutionary Optimization using a Flexible Probability Density Estimator , 1999, GECCO.

[131]  J. Ross Quinlan,et al.  Combining Instance-Based and Model-Based Learning , 1993, ICML.

[132]  A. Federgruen,et al.  A Simple Forward Algorithm to Solve General Dynamic Lot Sizing Models with n Periods in 0n log n or 0n Time , 1991 .

[133]  Fabián A. Chudak,et al.  Near-optimal solutions to large-scale facility location problems , 2005, Discret. Optim..

[134]  Mark Harman,et al.  Genetic and Evolutionary Computation (GECCO) , 2003 .

[135]  B. M. Khumawala,et al.  An Efficient Branch and Bound Algorithm for the Capacitated Warehouse Location Problem , 1977 .

[136]  Franz Rothlauf,et al.  The correlation-triggered adaptive variance scaling IDEA (CT-AVS-IDEA) , 2006 .

[137]  Mauro Birattari,et al.  Model-Based Search for Combinatorial Optimization: A Critical Survey , 2004, Ann. Oper. Res..

[138]  K. S. Kölbig,et al.  Errata: Milton Abramowitz and Irene A. Stegun, editors, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau of Standards, Applied Mathematics Series, No. 55, U.S. Government Printing Office, Washington, D.C., 1994, and all known reprints , 1972 .

[139]  Zbigniew Michalewicz,et al.  Parameter Setting in Evolutionary Algorithms , 2007, Studies in Computational Intelligence.

[140]  D. Goldberg,et al.  Linkage learning through probabilistic expression , 2000 .

[141]  R. D. Galvão,et al.  A method for solving to optimality uncapacitated location problems , 1990 .

[142]  G. Harik Linkage Learning via Probabilistic Modeling in the ECGA , 1999 .

[143]  Hartmut Stadtler,et al.  Supply Chain Management and Advanced Planning , 2000 .

[144]  Sean P. Willems,et al.  Optimizing Strategic Safety Stock Placement in Supply Chains , 2000, Manuf. Serv. Oper. Manag..

[145]  J. Kratica,et al.  Solving of the uncapacitated warehouse location problem using a simple genetic algorithm , 1996 .

[146]  Shigeyoshi Tsutsui,et al.  Probabilistic Model-Building Genetic Algorithms in Permutation Representation Domain Using Edge Histogram , 2002, PPSN.

[147]  David E. Goldberg,et al.  Scalability of the Bayesian optimization algorithm , 2002, Int. J. Approx. Reason..

[148]  Edward A Silver,et al.  Coordinated replenishments of items under time‐varying demand: Dynamic programming formulation , 1979 .

[149]  Sean P. Willems,et al.  Supply Chain Design: Safety Stock Placement and Supply Chain Configuration , 2003, Supply Chain Management.

[150]  D. Goldberg,et al.  BOA: the Bayesian optimization algorithm , 1999 .

[151]  M. Abramowitz,et al.  Handbook of Mathematical Functions With Formulas, Graphs and Mathematical Tables (National Bureau of Standards Applied Mathematics Series No. 55) , 1965 .

[152]  N. L. Johnson,et al.  Continuous Multivariate Distributions, Volume 1: Models and Applications , 2019 .

[153]  Dan Wilson A MEAN COST APPROXIMATION FOR TRANSPORTATION PROBLEMS WITH STOCHASTIC DEMAND , 1975 .

[154]  A. S. Kenyon,et al.  A survey on stochastic location and routing problems , 2001 .

[155]  Jens Jägersküpper,et al.  Rigorous Runtime Analysis of the (1+1) ES: 1/5-Rule and Ellipsoidal Fitness Landscapes , 2005, FOGA.

[156]  T. Gerig Multivariate Analysis: Techniques for Educational and Psychological Research , 1975 .

[157]  Zeger Degraeve,et al.  Meta-heuristics for dynamic lot sizing: A review and comparison of solution approaches , 2004, Eur. J. Oper. Res..

[158]  Eb Erik Diks,et al.  Multi-echelon systems: A service measure perspective , 1996 .

[159]  Louise Travé-Massuyès,et al.  Telephone Network Traffic Overloading Diagnosis and Evolutionary Computation Techniques , 1997, Artificial Evolution.

[160]  C. N. Liu,et al.  Approximating discrete probability distributions with dependence trees , 1968, IEEE Trans. Inf. Theory.

[161]  Arunachalam Narayanan,et al.  More on ‘Models and algorithms for the dynamic-demand joint replenishment problem’ , 2006 .

[162]  Shumeet Baluja,et al.  A Method for Integrating Genetic Search Based Function Optimization and Competitive Learning , 1994 .

[163]  Bernard De Baets,et al.  Using Linkage Learning for Forest Management Planning , 2002, GECCO Late Breaking Papers.

[164]  Aimo A. Törn,et al.  Global Optimization , 1999, Science.

[165]  Pedro Larrañaga,et al.  Mathematical modelling of UMDAc algorithm with tournament selection. Behaviour on linear and quadratic functions , 2002, Int. J. Approx. Reason..

[166]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[167]  David E. Boyce,et al.  Improved Efficiency of the Frank-Wolfe Algorithm for Convex Network Programs , 1985, Transp. Sci..

[168]  R. A. Leibler,et al.  On Information and Sufficiency , 1951 .

[169]  Sven Axsäter,et al.  Supply Chain Operations: Serial and Distribution Inventory Systems , 2003, Supply Chain Management.

[170]  Stefan Minner,et al.  Verteilungsschätzende Verfahren zur Lösung stochastischer Transportprobleme , 2006 .

[171]  Terence Soule,et al.  Genetic Programming: Theory and Practice , 2003 .

[172]  Jörn Grahl,et al.  Behaviour of UMDAc algorithm with truncation selection on monotonous functions , 2005 .

[173]  Heinz Mühlenbein,et al.  The Estimation of Distributions and the Minimum Relative Entropy Principle , 2005, Evol. Comput..

[174]  E. Arkin,et al.  Computational complexity of uncapacitated multi-echelon production planning problems , 1989 .

[175]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[176]  Carlos Cotta,et al.  Evolutionary Computation in Combinatorial Optimization, 7th European Conference, EvoCOP 2007, Valencia, Spain, April 11-13, 2007, Proceedings , 2007, EvoCOP.

[177]  Pascal Van Hentenryck,et al.  A simple tabu search for warehouse location , 2004, Eur. J. Oper. Res..

[178]  E. Cantu-Paz,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1997, Evolutionary Computation.

[179]  David E. Goldberg,et al.  Bayesian Optimization Algorithm, Population Sizing, and Time to Convergence , 2000, GECCO.

[180]  Peter A. N. Bosman,et al.  Learning Structure Illuminates Black Boxes - An Introduction to Estimation of Distribution Algorithms , 2008, Advances in Metaheuristics for Hard Optimization.

[181]  Mark A. Pitt,et al.  Advances in Minimum Description Length: Theory and Applications , 2005 .

[182]  Marco Dorigo,et al.  Optimization, Learning and Natural Algorithms , 1992 .

[183]  Donald Erlenkotter,et al.  A Dual-Based Procedure for Uncapacitated Facility Location , 1978, Oper. Res..

[184]  Stephen C. Allen,et al.  Redistribution of total stock over several user locations , 1958 .

[185]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[186]  Pedro Larrañaga,et al.  Learning Bayesian networks in the space of structures by estimation of distribution algorithms , 2003, Int. J. Intell. Syst..

[187]  J. Krarup,et al.  Sharp Lower Bounds and Efficient Algorithms for the Simple Plant Location Problem , 1977 .

[188]  Sean P. Willems,et al.  Optimizing Strategic Safety Stock Placement in Supply Chains with Clusters of Commonality , 2006, Oper. Res..

[189]  Arthur F. Veinott,et al.  Minimum Concave-Cost Solution of Leontief Substitution Models of Multi-Facility Inventory Systems , 1969, Oper. Res..

[190]  Alfred A. Kuehn,et al.  A Heuristic Program for Locating Warehouses , 1963 .

[191]  Marcus Gallagher,et al.  On the importance of diversity maintenance in estimation of distribution algorithms , 2005, GECCO '05.

[192]  David E. Goldberg,et al.  Efficiency Enhancement of Probabilistic Model Building Genetic Algorithms , 2004, ArXiv.

[193]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[194]  Marco Dorigo,et al.  Search bias in ant colony optimization: on the role of competition-balanced systems , 2005, IEEE Transactions on Evolutionary Computation.

[195]  Petros Koumoutsakos,et al.  Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.

[196]  Peter A. N. Bosman,et al.  Learning Probabilistic Tree Grammars for Genetic Programming , 2004, PPSN.

[197]  Christian Blum,et al.  Theoretical and practical aspects of ant colony optimization , 2004 .

[198]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[199]  Hitoshi Iba,et al.  Real-Coded Estimation of Distribution Algorithm , 2003 .

[200]  B. Fleischmann Designing distribution systems with transport economies of scale , 1993 .

[201]  Dirk Thierens,et al.  Expanding from Discrete to Continuous Estimation of Distribution Algorithms: The IDEA , 2000, PPSN.

[202]  Thomas Bäck,et al.  Parallel Problem Solving from Nature — PPSN V , 1998, Lecture Notes in Computer Science.

[203]  M. Guignard A Lagrangean dual ascent algorithm for simple plant location problems , 1988 .

[204]  Dirk Thierens,et al.  Advancing continuous IDEAs with mixture distributions and factorization selection metrics , 2001 .

[205]  J. Deneubourg,et al.  The self-organizing exploratory pattern of the argentine ant , 1990, Journal of Insect Behavior.

[206]  David E. Goldberg,et al.  The compact genetic algorithm , 1999, IEEE Trans. Evol. Comput..

[207]  Peter A. N. Bosman,et al.  Design and Application of iterated Density-Estimation Evolutionary Algorithms , 2003 .

[208]  M. Pelikán,et al.  The Bivariate Marginal Distribution Algorithm , 1999 .

[209]  Franz Rothlauf,et al.  SDR: a better trigger for adaptive variance scaling in normal EDAs , 2007, GECCO '07.

[210]  Michael I. Jordan Learning in Graphical Models , 1999, NATO ASI Series.

[211]  Mark S. Daskin,et al.  Network and Discrete Location: Models, Algorithms and Applications , 1995 .

[212]  Li-Lian Gao,et al.  A Dual Ascent Procedure for Multiproduct Dynamic Demand Coordinated Replenishment with Backlogging , 1996 .

[213]  Bhaba R. Sarker,et al.  Discrete location theory , 1991 .

[214]  K. Judd Numerical methods in economics , 1998 .

[215]  S. Graves,et al.  Supply chain management : design, coordination and operation , 2003 .

[216]  G. Laporte,et al.  Models and algorithms for the dynamic-demand joint replenishment problem , 2004 .

[217]  G. Harik Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms , 1997 .

[218]  Edmund K. Burke,et al.  Parallel Problem Solving from Nature - PPSN IX: 9th International Conference, Reykjavik, Iceland, September 9-13, 2006, Proceedings , 2006, PPSN.

[219]  Edmund Robinson,et al.  Effective heuristics for the dynamic demand joint replenishment problem , 2007, J. Oper. Res. Soc..

[220]  Isabelle Bloch,et al.  Inexact graph matching by means of estimation of distribution algorithms , 2002, Pattern Recognit..

[221]  Lothar Thiele,et al.  A Comparison of Selection Schemes Used in Evolutionary Algorithms , 1996, Evolutionary Computation.

[222]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .