Probabilistic visual verification for robotic assembly manipulation

In this paper we present a visual verification approach for robotic assembly manipulation which enables robots to verify their assembly state. Given shape models of objects and their expected placement configurations, our approach estimates the probability of the success of the assembled state using a depth sensor. The proposed approach takes into account uncertainties in object pose. Probability distributions of depth and surface normal depending on the uncertainties are estimated to classify the assembly state in a Bayesian formulation. The effectiveness of our approach is validated in comparative experiments with other approaches.

[1]  E. Torres-Jara,et al.  Challenges for Robot Manipulation in Human Environments , 2006 .

[2]  Charles C. Kemp,et al.  Challenges for robot manipulation in human environments [Grand Challenges of Robotics] , 2007, IEEE Robotics & Automation Magazine.

[3]  Marc Levoy,et al.  Efficient variants of the ICP algorithm , 2001, Proceedings Third International Conference on 3-D Digital Imaging and Modeling.

[4]  L. Davis,et al.  Background and foreground modeling using nonparametric kernel density estimation for visual surveillance , 2002, Proc. IEEE.

[5]  Paul Timothy Furgale,et al.  Associating Uncertainty With Three-Dimensional Poses for Use in Estimation Problems , 2014, IEEE Transactions on Robotics.

[6]  Albert-Jan Baerveldt,et al.  Robot localization based on scan-matching - estimating the covariance matrix for the IDC algorithm , 2003, Robotics Auton. Syst..

[7]  Ming-Yu Liu,et al.  Voting-based pose estimation for robotic assembly using a 3D sensor , 2012, 2012 IEEE International Conference on Robotics and Automation.

[8]  Charles A. Harlow,et al.  Automated Visual Inspection: A Survey , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[9]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Euripides G. M. Petrakis,et al.  A survey on industrial vision systems, applications, tools , 2003, Image Vis. Comput..

[11]  James M. Rehg,et al.  Statistical Color Models with Application to Skin Detection , 2004, International Journal of Computer Vision.

[12]  Matthew T. Mason,et al.  Mechanics of Robotic Manipulation , 2001 .

[13]  F. Prieto,et al.  An Automated Inspection System , 2002 .

[14]  Robert C. Bolles,et al.  Verification Vision for Programmable Assembly , 1977, IJCAI.

[15]  David Bourne,et al.  My boss the robot. , 2013, Scientific American.

[16]  Hanspeter Pfister,et al.  Automatic Pose Estimation for Range Images on the GPU , 2007, Sixth International Conference on 3-D Digital Imaging and Modeling (3DIM 2007).

[17]  M. Ani Hsieh,et al.  Distributed assembly with online workload balancing and visual error detection and correction , 2014, Int. J. Robotics Res..

[18]  Kevin P. Murphy,et al.  Machine learning - a probabilistic perspective , 2012, Adaptive computation and machine learning series.

[19]  Siddhartha S. Srinivasa,et al.  The MOPED framework: Object recognition and pose estimation for manipulation , 2011, Int. J. Robotics Res..

[20]  Sander Oude Elberink,et al.  Accuracy and Resolution of Kinect Depth Data for Indoor Mapping Applications , 2012, Sensors.

[21]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[22]  Robert C. Bolles,et al.  Parametric Correspondence and Chamfer Matching: Two New Techniques for Image Matching , 1977, IJCAI.

[23]  Andrew W. Fitzgibbon,et al.  KinectFusion: Real-time dense surface mapping and tracking , 2011, 2011 10th IEEE International Symposium on Mixed and Augmented Reality.

[24]  Robert Coy Bolles Verification vision within a programmable assembly system , 1976 .

[25]  Vincent Lepetit,et al.  Keypoint recognition using randomized trees , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Henrik I. Christensen,et al.  RGB-D object tracking: A particle filter approach on GPU , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[27]  Dieter Fox,et al.  RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Environments , 2010, ISER.

[28]  Susan T. Dumais,et al.  A Bayesian Approach to Filtering Junk E-Mail , 1998, AAAI 1998.

[29]  Anil K. Jain,et al.  A Survey of Automated Visual Inspection , 1995, Comput. Vis. Image Underst..

[30]  Anil K. Jain,et al.  A system for 3D CAD-based inspection using range images , 1995, Pattern Recognit..

[31]  John J. Leonard,et al.  A Mixture of Manhattan Frames: Beyond the Manhattan World , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.