Optimal control and analysis for constrained piecewise affine systems

One of the most important and challenging problems in control is the derivation of systematic tools for the computation of controllers for general constrained nonlinear or hybrid systems (combining continuous-valued dynamics with logic rules) that can guarantee (among others) closed-loop stability, feasibility, and optimality. The most successful modern control strategy both in theory and in practice for this class of systems is undoubtedly Receding Horizon Control (RHC), often also interchangeably called Model (Based) Predictive Control (MPC). In this thesis the focus lies on the class of constrained discrete-time piecewise affine (PWA) systems, which is equivalent to a variety of other hybrid system modeling frameworks reported in the literature. PWA systems are obtained by partitioning the extended state-input space into regions and associating with each region a different affine state update equation. This paradigm is a powerful modeling tool that can capture general nonlinearities (e.g. by local approximation), constraints, saturations, switches, discrete inputs and states, and other hybrid modeling phenomena in dynamical systems. Although PWA systems are a subclass of general nonlinear systems, most of the control theory developed for nonlinear control does not apply, due to commonly made continuity and smoothness requirements. By utilizing multi-parametric programming, the RHC problem for PWA systems can be solved off-line in order to obtain a closed-form optimal controller solution. Once the closed-form solution is computed, the resulting controller can be implemented as a simple lookup table. Thus the on-line computational effort is reduced to a simple evaluation of the lookup table at the current measured state and enables the control of complex fast sampled systems in the range of millior microseconds. The main theme of this work revolves around the efficient and systematic computation, analysis, and post-processing of closed-form, optimal, stabilizing, exact state-feedback controllers for fast sampled discrete-time PWA systems, where the cost function of the respective optimal control problem is composed of (piecewise) linear vector norms. One way to obtain the closed-form solution to the underlying constrained finite

[1]  Fabio Danilo Torrisi,et al.  Modeling and reach-set computation for analysis and optimal control of discrete hybrid automata , 2003 .

[2]  A. Polański Lyapunov function construction by linear programming , 1997, IEEE Trans. Autom. Control..

[3]  Christodoulos A. Floudas,et al.  Nonlinear and Mixed-Integer Optimization , 1995 .

[4]  Francis J. Doyle,et al.  MPC study for a dual headbox CD control problem , 2001 .

[5]  M. Morari,et al.  Stability analysis of hybrid systems with a linear performance index , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[6]  C. R. Cutler,et al.  Dynamic matrix control¿A computer control algorithm , 1979 .

[7]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[8]  F. Borrelli Discrete time constrained optimal control , 2002 .

[9]  Mikael Johansson,et al.  Piecewise linear control systems - a computational approach , 2002, Lecture notes in control and information sciences.

[10]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[11]  C. Jones,et al.  A LOGARITHMIC-TIME SOLUTION TO THE POINT LOCATION PROBLEM FOR CLOSED-FORM LINEAR MPC , 2005 .

[12]  Fulvio Gini,et al.  Adaptive and Learning Systems for Signal Processing, Communications, and Control , 2008 .

[13]  Ignacio E. Grossmann,et al.  A model predictive control strategy for supply chain optimization , 2003, Comput. Chem. Eng..

[14]  Jun Wang,et al.  A recurrent neural network for minimum infinity-norm kinematic control of redundant manipulators with an improved problem formulation and reduced architecture complexity , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[15]  Tobias Geyer,et al.  Low complexity model predictive control in power electronics and power systems , 2005 .

[16]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[17]  Mato Baotic,et al.  Constrained Optimal Control of Hybrid Systems With a Linear Performance Index , 2006, IEEE Transactions on Automatic Control.

[18]  M. Morari,et al.  Efficient evaluation of piecewise control laws defined over a large number of polyhedra , 2007, 2007 European Control Conference (ECC).

[19]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[20]  A. M. Lyapunov The general problem of the stability of motion , 1992 .

[21]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[22]  J. Maciejowski,et al.  Equality Set Projection: A new algorithm for the projection of polytopes in halfspace representation , 2004 .

[23]  Peter Lancaster,et al.  The theory of matrices , 1969 .

[24]  Gene H. Golub,et al.  Ill-conditioned eigensystems and the computation of the Jordan canonical form , 1975, Milestones in Matrix Computation.

[25]  Alberto Bemporad,et al.  Robust model predictive control: A survey , 1998, Robustness in Identification and Control.

[26]  Francesco Borrelli,et al.  Constrained Optimal Control of Linear and Hybrid Systems , 2003, IEEE Transactions on Automatic Control.

[27]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[28]  J. Löfberg Minimax approaches to robust model predictive control , 2003 .

[29]  Andrew R. Teel,et al.  Model predictive control: for want of a local control Lyapunov function, all is not lost , 2005, IEEE Transactions on Automatic Control.

[30]  T. A. Badgwell,et al.  An Overview of Industrial Model Predictive Control Technology , 1997 .

[31]  H. Kiendl,et al.  Vector norms as Lyapunov functions for linear systems , 1992 .

[32]  Thomas M. Liebling,et al.  Extended convex hull , 2001, Comput. Geom..

[33]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[34]  A. Bemporad,et al.  Suboptimal explicit MPC via approximate multiparametric quadratic programming , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[35]  Alberto Bemporad,et al.  Infinity Norms as Lyapunov Functions for Model Predictive Control of Constrained PWA Systems , 2005, HSCC.

[36]  Mato Baotić,et al.  Optimal control of piecewise affine systems - a multi-parametric approach , 2005 .

[37]  Mario Sznaier,et al.  Suboptimal control of linear systems with state and control inequality constraints , 1987, 26th IEEE Conference on Decision and Control.

[38]  G. Bitsoris Positively invariant polyhedral sets of discrete-time linear systems , 1988 .

[39]  C. Kellett,et al.  On robustness of stability and Lyapunov functions for discontinuous difference equations , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[40]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[41]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, Comb..

[42]  Bo Lincoln,et al.  Dynamic Programming and Time-Varying Delay Systems , 2003 .

[43]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[44]  A. Polański On infinity norms as Lyapunov functions for linear systems , 1995, IEEE Trans. Autom. Control..

[45]  Andrew R. Teel,et al.  Results on discrete-time control-Lyapunov functions , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[46]  W. Heemels,et al.  Non-smooth Model Predictive control: Stability and applications to Hybrid Systems , 2005 .

[47]  S. Keerthi,et al.  Solution of parametrized linear inequalities by Fourier elimination and its applications , 1990 .

[48]  James B. Rawlings,et al.  Tutorial overview of model predictive control , 2000 .

[49]  Alberto Bemporad,et al.  HYSDEL-a tool for generating computational hybrid models for analysis and synthesis problems , 2004, IEEE Transactions on Control Systems Technology.

[50]  Colin Neil Jones,et al.  Lexicographic perturbation for multiparametric linear programming with applications to control , 2007, Autom..

[51]  Andrew R. Teel,et al.  Examples when nonlinear model predictive control is nonrobust , 2004, Autom..

[52]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[53]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[54]  Colin N. Jones,et al.  Polyhedral Tools for Control , 2005 .

[55]  Alberto Bemporad,et al.  HYSDEL 2.0. 5- User manual , 2002 .

[56]  David Q. Mayne,et al.  Control of Constrained Dynamic Systems , 2001, Eur. J. Control.

[57]  Frank J. Christophersen,et al.  Further Results on “Infinity Norms as Lyapunov Functions for Linear Systems” , 2007, IEEE Transactions on Automatic Control.

[58]  M. Morari,et al.  Optimal control of piecewise affine systems: A dynamic programming approach , 2005 .

[59]  D. Mayne,et al.  Optimal control of constrained, piecewise affine systems with bounded disturbances , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[60]  John Lygeros,et al.  Controllers for reachability specifications for hybrid systems , 1999, Autom..

[61]  M. Branicky,et al.  Solving hybrid control problems: level sets and behavioral programming , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[62]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[63]  Min-Jea Tahk,et al.  Impact-time-control guidance law for anti-ship missiles , 2006, IEEE Trans. Control. Syst. Technol..

[64]  Francis J. Doyle,et al.  Customization strategies for the solution of linear programming problems arising from large scale model predictive control of a paper machine , 1999 .

[65]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[66]  J. Shamma,et al.  Linear nonquadratic optimal control , 1997, IEEE Trans. Autom. Control..

[67]  Magnus Egerstedt,et al.  Trajectory planning in the infinity norm for linear control systems , 1999 .

[68]  Dimitri P. Bertsekas,et al.  Stochastic optimal control : the discrete time case , 2007 .

[69]  Andreas Löhne,et al.  On convergence of closed convex sets , 2006 .

[70]  P. Grieder,et al.  Low complexity control of piecewise affine systems with stability guarantee , 2004, Proceedings of the 2004 American Control Conference.

[71]  Pascal Grieder,et al.  Efficient computation of feedback controllers for constrained systems , 2004 .

[72]  M. Morari,et al.  Optimal control of PWA systems by exploiting problem structure , 2005 .

[73]  Marco Laumanns,et al.  Robust optimal control of material flows in demand-driven supply networks , 2006 .

[74]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[75]  W. Heemels Linear complementarity systems : a study in hybrid dynamics , 1999 .

[76]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[77]  A. Bemporad,et al.  Efficient on-line computation of constrained optimal control , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[78]  D. Mayne,et al.  Model predictive control of constrained piecewise affine discrete‐time systems , 2003 .

[79]  Yong-Yan Cao,et al.  Model predictive control for uncertain systems , 1998, Proceedings of the 1998 American Control Conference. ACC (IEEE Cat. No.98CH36207).

[80]  Alberto Bemporad,et al.  Inner and outer approximations of polytopes using boxes , 2004, Comput. Geom..

[81]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[82]  M. Morari,et al.  Optimal complexity reduction of piecewise affine models based on hyperplane arrangements , 2004, Proceedings of the 2004 American Control Conference.

[83]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[84]  P. Antsaklis,et al.  Design of stabilizing switching control laws for discrete- and continuous-time linear systems using piecewise-linear Lyapunov functions , 2002 .

[85]  Gültekin Erdem On-line optimization and control of simulated moving bed processes , 2004 .

[86]  D. Mayne,et al.  Reachability computations for constrained discrete-time systems with state-and input-dependent disturbances , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[87]  Jean-Philippe Vial,et al.  Theory and algorithms for linear optimization - an interior point approach , 1998, Wiley-Interscience series in discrete mathematics and optimization.

[88]  Mato Baotic,et al.  A new algorithm for constrained finite time optimal control of hybrid systems with a linear performance index , 2003, 2003 European Control Conference (ECC).

[89]  Alberto Bemporad,et al.  Efficient On-Line Computation of Constrained Optimal Control , 2008, SIAM J. Control. Optim..

[90]  Mato Baotic,et al.  Stabilizing low complexity feedback control of constrained piecewise affine systems , 2005, Autom..

[91]  Graham C. Goodwin,et al.  Constrained Control and Estimation: an Optimization Approach , 2004, IEEE Transactions on Automatic Control.

[93]  I. Niven,et al.  An introduction to the theory of numbers , 1961 .

[94]  Tor Arne Johansen,et al.  A METHOD FOR OBTAINING CONTINUOUS SOLUTIONS TO MULTIPARAMETRIC LINEAR PROGRAMS , 2005 .

[95]  Alberto Bemporad,et al.  On the Stability and Robustness of Non-smooth Nonlinear Model Predictive Control , 2005 .

[96]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..

[97]  Hing So,et al.  Existence conditions for L_1 Lyapunov functions for a class of nonautonomous systems , 1972 .

[98]  M. Baotic,et al.  Infinite time optimal control of hybrid systems with a linear performance index , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[99]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[100]  Eduardo Sontag A Lyapunov-Like Characterization of Asymptotic Controllability , 1983, SIAM Journal on Control and Optimization.

[101]  Jay H. Lee,et al.  Model predictive control: past, present and future , 1999 .

[102]  E. Polak,et al.  Discrete-Time Systems: An Introduction to the Theory. Herbert Freeman. Wiley, New York, 1965. xiv + 241 pp. Illus. $10 , 1965 .

[103]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[104]  E. Kerrigan Robust Constraint Satisfaction: Invariant Sets and Predictive Control , 2000 .

[105]  Manfred Morari,et al.  Analysis of discrete-time piecewise affine and hybrid systems , 2002, Autom..

[106]  K. Fukuda Frequently Asked Questions in Polyhedral Computation , 2000 .

[107]  Petter Tøndel,et al.  Constrained optimal control via multiparametric quadraticprogramming , 2003 .

[108]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[109]  Alberto Bemporad,et al.  Model predictive control based on linear programming - the explicit solution , 2002, IEEE Transactions on Automatic Control.

[110]  Manfred Morari,et al.  Model predictive control: Theory and practice - A survey , 1989, Autom..

[111]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[112]  M. Morari,et al.  On-line Tuning of Controllers for Systems with Constraints , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[113]  D. M. Hutton,et al.  Exploring Chaos: Theory and Experiment , 2006 .

[114]  K. T. Tan,et al.  Linear systems with state and control constraints: the theory and application of maximal output admissible sets , 1991 .

[115]  L. Zadeh,et al.  On optimal control and linear programming , 1962 .

[116]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[117]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[118]  Z. Artstein Stabilization with relaxed controls , 1983 .

[119]  P. B. Coaker,et al.  Applied Dynamic Programming , 1964 .

[120]  M. Morari,et al.  Optimal controllers for hybrid systems: stability and piecewise linear explicit form , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[121]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[122]  Alberto Bemporad,et al.  Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..

[123]  Lorenzo Marconi,et al.  Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems , 2005 .