Using group selection to evolve leadership in populations of self-replicating digital organisms

This paper describes a study in the evolution of distributed cooperative behavior, specifically leader election, through digital evolution and group selection. In digital evolution, a population of self-replicating computer programs exists in a user-defined computational environment and is subject to instruction-level mutations and natural selection. Group selection is the theory that the survival of the individual is linked to the survival of the group, thus encouraging cooperation. The results of experiments using the Avida digital evolution platform demonstrate that group selection can produce populations capable of electing a leader and, when that leader is terminated, electing a new leader. This result serves as an existence proof that group selection and digital evolution can produce complex cooperative behaviors, and therefore have promise in the design of robust distributed computing systems.

[1]  Steven Johnson,et al.  Emergence: The Connected Lives of Ants, Brains, Cities, and Software , 2001 .

[2]  Christian F. Tschudin,et al.  Experiments on the Automatic Evolution of Protocols Using Genetic Programming , 2005, WAC.

[3]  Francesco Mondada,et al.  Collective and Cooperative Group Behaviors: Biologically Inspired Experiments in Robotics , 1995, ISER.

[4]  J. Pollack,et al.  Kin-Selection: The Rise and Fall of Kin-Cheaters , 2004 .

[5]  Prithviraj Dasgupta Intelligent Agent Enabled Genetic Ant Algorithm for P2P Resource Discovery , 2004, AP2PC.

[6]  M. J. W. Eberhard,et al.  The Evolution of Social Behavior by Kin Selection , 1975, The Quarterly Review of Biology.

[7]  C. Adami,et al.  Evolution of Biological Complexity , 2000, Proc. Natl. Acad. Sci. USA.

[8]  Per Kristian Lehre,et al.  On the effect of populations in evolutionary multi-objective optimization , 2006, GECCO.

[9]  Robert T. Pennock,et al.  Kin-Selection : The Rise and Fall of Kin-Cheaters , 2004 .

[10]  David W. Payton,et al.  Pheromone Robotics , 2001, Auton. Robots.

[11]  I. Mysterud Unto others: The evolution and psychology of unselfish behavior , 1999 .

[12]  C. Ofria,et al.  Genome complexity, robustness and genetic interactions in digital organisms , 1999, Nature.

[13]  David B. Knoester,et al.  Evolution of Leader Election in Populations of Self-Replicating Digital Organisms , 1996 .

[14]  Robert T. Pennock,et al.  The evolutionary origin of complex features , 2003, Nature.

[15]  References , 1971 .

[16]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[17]  D. Wilson,et al.  Altruism And Organism: Disentangling The Themes Of Multilevel Selection Theory , 1997, The American Naturalist.

[18]  Jeffrey O. Kephart,et al.  The Vision of Autonomic Computing , 2003, Computer.

[19]  D. Wilson A theory of group selection. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[20]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[21]  Jürgen Branke,et al.  Evolutionary Optimization in Dynamic Environments , 2001, Genetic Algorithms and Evolutionary Computation.

[22]  John R. Koza,et al.  Genetic Programming IV: Routine Human-Competitive Machine Intelligence , 2003 .

[23]  L. Keller Social evolution in ants , 1996 .

[24]  Seyed Masoud Sadjadi,et al.  Composing adaptive software , 2004, Computer.

[25]  Tadahiko Murata,et al.  Genetic network programming with automatically defined groups for assigning proper roles to multiple agents , 2005, GECCO '05.

[26]  Christoph Adami,et al.  Evolution of genetic organization in digital organisms , 1999, ArXiv.

[27]  Luís E. T. Rodrigues,et al.  A genetic algorithm for multicast mapping in publish-subscribe systems , 2003, Second IEEE International Symposium on Network Computing and Applications, 2003. NCA 2003..

[28]  Stefano Nolfi,et al.  The Role of Social and Cognitive Factors in the Emergence of Communication: Experiments in Evolutionary Robotics , 2003 .

[29]  Roberto Montemanni,et al.  Design patterns from biology for distributed computing , 2006, TAAS.

[30]  C. Ofria,et al.  Evolution of digital organisms at high mutation rates leads to survival of the flattest , 2001, Nature.

[31]  J. Strassmann,et al.  KIN SELECTION AND SOCIAL INSECTS , 1998 .

[32]  Risto Miikkulainen,et al.  Automatic feature selection in neuroevolution , 2005, GECCO '05.

[33]  Thomas D. Seeley,et al.  Honey Bee Colonies are Group‐Level Adaptive Units , 1997, The American Naturalist.

[34]  S. Ranji Ranjithan,et al.  Multipopulation cooperative coevolutionary programming (MCCP) to enhance design innovation , 2005, GECCO '05.

[35]  Christoph Adami,et al.  Design of evolvable computer languages , 2002, IEEE Trans. Evol. Comput..

[36]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[37]  V. Wynne-Edwards Animal dispersion in relation to social behaviour , 1962 .

[38]  Charles Ofria,et al.  Avida , 2004, Artificial Life.

[39]  Christian Jacob,et al.  Evolutionary exploration of dynamic swarm behaviour , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..