Rigid Network Design Via Submodular Set Function Optimization

We consider the problem of constructing networks that exhibit desirable algebraic rigidity properties, which can provide significant performance improvements for associated formation shape control and localization tasks. We show that the network design problem can be formulated as a submodular set function optimization problem and propose greedy algorithms that achieve global optimality or an established near-optimality guarantee. We also consider the separate but related problem of selecting anchors for sensor network localization to optimize a metric of the error in the localization solutions. We show that an interesting metric is a modular set function, which allows a globally optimal selection to be obtained using a simple greedy algorithm. The results are illustrated via numerical examples, and we show that the methods scale to problems well beyond the capabilities of current state-of-the-art convex relaxation techniques.

[1]  Brian D. O. Anderson,et al.  A Theory of Network Localization , 2006, IEEE Transactions on Mobile Computing.

[2]  David C. Moore,et al.  Robust distributed network localization with noisy range measurements , 2004, SenSys '04.

[3]  Tyler H. Summers,et al.  Control of Minimally Persistent Leader-Remote-Follower and Coleader Formations in the Plane , 2011, IEEE Transactions on Automatic Control.

[4]  B. Roth,et al.  The rigidity of graphs, II , 1979 .

[5]  Koen Langendoen,et al.  Distributed localization in wireless sensor networks: a quantitative compariso , 2003, Comput. Networks.

[6]  Radha Poovendran,et al.  A Supermodular Optimization Framework for Leader Selection Under Link Noise in Linear Multi-Agent Systems , 2012, IEEE Transactions on Automatic Control.

[7]  John Lygeros,et al.  Submodularity of energy related controllability metrics , 2014, 53rd IEEE Conference on Decision and Control.

[8]  Lebrecht Henneberg,et al.  Die graphische Statik der Starren Systeme , 1911 .

[9]  John Lygeros,et al.  Topology design for optimal network coherence , 2014, 2015 European Control Conference (ECC).

[10]  Bruce Hendrickson,et al.  Conditions for Unique Graph Realizations , 1992, SIAM J. Comput..

[11]  Brian D. O. Anderson,et al.  Rigidity, computation, and randomization in network localization , 2004, IEEE INFOCOM 2004.

[12]  Brian D. O. Anderson,et al.  Minimization of the effect of noisy measurements on localization of multi-agent autonomous formations , 2009, Autom..

[13]  John Lygeros,et al.  Optimal Sensor and Actuator Placement in Complex Dynamical Networks , 2013, ArXiv.

[14]  László Lovász,et al.  Submodular functions and convexity , 1982, ISMP.

[15]  Brian D. O. Anderson,et al.  Formal Theory of Noisy Sensor Network Localization , 2010, SIAM J. Discret. Math..

[16]  Jan Vondrák,et al.  Maximizing a Monotone Submodular Function Subject to a Matroid Constraint , 2011, SIAM J. Comput..

[17]  Randolph L. Moses,et al.  On optimal anchor node placement in sensor localization by optimization of subspace principal angles , 2008, 2008 IEEE International Conference on Acoustics, Speech and Signal Processing.

[18]  Kim-Chuan Toh,et al.  Semidefinite Programming Approaches for Sensor Network Localization With Noisy Distance Measurements , 2006, IEEE Transactions on Automation Science and Engineering.

[19]  Robert Connelly,et al.  Generic Global Rigidity , 2005, Discret. Comput. Geom..

[20]  J. Hendrickx,et al.  Rigid graph control architectures for autonomous formations , 2008, IEEE Control Systems.

[21]  Mounir Ghogho,et al.  Effects of anchor placement on mean-CRB for localization , 2011, 2011 The 10th IFIP Annual Mediterranean Ad Hoc Networking Workshop.

[22]  Yu-Yan Zhang,et al.  Automatic generation of optimally rigid formations using decentralized methods , 2010, Int. J. Autom. Comput..

[23]  John Lygeros,et al.  On Submodularity and Controllability in Complex Dynamical Networks , 2014, IEEE Transactions on Control of Network Systems.

[24]  Mireille E. Broucke,et al.  Stabilisation of infinitesimally rigid formations of multi-robot networks , 2009, Int. J. Control.

[25]  Anthony Man-Cho So,et al.  Theory of semidefinite programming for Sensor Network Localization , 2005, SODA '05.

[26]  G. Laman On graphs and rigidity of plane skeletal structures , 1970 .

[27]  Bill Jackson,et al.  Egerváry Research Group on Combinatorial Optimization Connected Rigidity Matroids and Unique Realizations of Graphs Connected Rigidity Matroids and Unique Realizations of Graphs , 2022 .

[28]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[29]  Gaurav S. Sukhatme,et al.  Decentralized algorithms for optimally rigid network constructions , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[30]  Brian D. O. Anderson,et al.  Wireless sensor network localization techniques , 2007, Comput. Networks.

[31]  Brian D. O. Anderson,et al.  Control of Minimally Persistent Formations in the Plane , 2009, SIAM J. Control. Optim..

[32]  Jack E. Graver,et al.  Rigidity Matroids , 1991, SIAM J. Discret. Math..

[33]  R. Murray,et al.  Graph rigidity and distributed formation stabilization of multi-vehicle systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[34]  Antonio Franchi,et al.  Decentralized rigidity maintenance control with range measurements for multi-robot systems , 2013, Int. J. Robotics Res..

[35]  Frank Allgöwer,et al.  Growing optimally rigid formations , 2012, 2012 American Control Conference (ACC).

[36]  Gaurav S. Sukhatme,et al.  Decentralized and Parallel Constructionsfor Optimally Rigid Graphs in $\mathbb{R}^2$ , 2015, IEEE Trans. Mob. Comput..

[37]  Ryan K. Williams,et al.  Decentralized and Parallel Constructions for Optimally Rigid Graphs in R 2 , 2015 .

[38]  Sundeep Prabhakar Chepuri,et al.  Sparsity-exploiting anchor placement for localization in sensor networks , 2013, 21st European Signal Processing Conference (EUSIPCO 2013).

[39]  W. Whiteley,et al.  Generating Isostatic Frameworks , 1985 .

[40]  Vincent D. Blondel,et al.  Three and higher dimensional autonomous formations: Rigidity, persistence and structural persistence , 2007, Autom..