Optimization-Based Inverse Model of Soft Robots With Contact Handling

This letter presents a physically based algorithm to interactively simulate and control the motion of soft robots interacting with their environment. We use the finite-element method to simulate the nonlinear deformation of the soft structure, its actuators, and surroundings and propose a control method relying on a quadratic optimization to find the inverse of the model. The novelty of this work is that the deformations due to contacts, including self-collisions, are taken into account in the optimization process. We propose a dedicated and efficient solver to handle the linear complementarity constraints introduced by the contacts. Thus, the method allows interactive transfer of the motion of soft robots from their task space to their actuator space while interacting with their surrounding. The method is generic and tested on several numerical examples and on a real cable-driven soft robot.

[1]  Rochdi Merzouki,et al.  Qualitative approach for inverse kinematic modeling of a Compact Bionic Handling Assistant trunk , 2014, 2014 International Joint Conference on Neural Networks (IJCNN).

[2]  Christian Duriez,et al.  Reduced Order Control of Soft Robots with Guaranteed Stability , 2018, 2018 European Control Conference (ECC).

[3]  Pierre-Brice Wieber,et al.  Hierarchical quadratic programming: Fast online humanoid-robot motion generation , 2014, Int. J. Robotics Res..

[4]  Markus H. Gross,et al.  Computational design of actuated deformable characters , 2013, ACM Trans. Graph..

[5]  Jernej Barbic,et al.  FEM simulation of 3D deformable solids: a practitioner's guide to theory, discretization and model reduction , 2012, SIGGRAPH '12.

[6]  Christian Duriez,et al.  Soft robots locomotion and manipulation control using FEM simulation and quadratic programming , 2019, 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft).

[7]  Andrew P. Witkin,et al.  Large steps in cloth simulation , 1998, SIGGRAPH.

[8]  Kun Zhou,et al.  An asymptotic numerical method for inverse elastic shape design , 2014, ACM Trans. Graph..

[9]  Kazuhito Yokoi,et al.  Planning walking patterns for a biped robot , 2001, IEEE Trans. Robotics Autom..

[10]  Taku Komura,et al.  Learning an inverse rig mapping for character animation , 2015, Symposium on Computer Animation.

[11]  Daniela Rus,et al.  Printable hydraulics: A method for fabricating robots by 3D co-printing solids and liquids , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[12]  M Calisti,et al.  Bioinspired locomotion and grasping in water: the soft eight-arm OCTOPUS robot , 2015, Bioinspiration & biomimetics.

[13]  Abhishek Sarkar,et al.  A deep reinforcement learning approach for dynamically stable inverse kinematics of humanoid robots , 2017, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[14]  Daniel M. Vogt,et al.  Batch Fabrication of Customizable Silicone‐Textile Composite Capacitive Strain Sensors for Human Motion Tracking , 2017 .

[15]  Andrew Howard,et al.  Design and use paradigms for Gazebo, an open-source multi-robot simulator , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[16]  Christian Duriez,et al.  FEM-Based Deformation Control for Dexterous Manipulation of 3D Soft Objects , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[17]  Stefan Schaal,et al.  Inverse kinematics for humanoid robots , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[18]  Christian Duriez,et al.  Realistic haptic rendering of interacting deformable objects in virtual environments , 2008, IEEE Transactions on Visualization and Computer Graphics.

[19]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[20]  Robert J. Wood,et al.  A Resilient, Untethered Soft Robot , 2014 .

[21]  Markus H. Gross,et al.  Deformable objects alive! , 2012, ACM Trans. Graph..

[22]  K. Bertoldi,et al.  A Bioinspired Soft Actuated Material , 2014, Advanced materials.

[23]  C. Majidi Soft Robotics: A Perspective—Current Trends and Prospects for the Future , 2014 .

[24]  Gabriel Zachmann,et al.  Collision Detection for Deformable Objects , 2004, Comput. Graph. Forum.

[25]  Christian Duriez,et al.  Fast, Generic, and Reliable Control and Simulation of Soft Robots Using Model Order Reduction , 2018, IEEE Transactions on Robotics.

[26]  Ronan Boulic,et al.  Parallel Inverse Kinematics for Multithreaded Architectures , 2016, ACM Trans. Graph..

[27]  Jérémie Dequidt,et al.  Introducing Interactive Inverse FEM Simulation and Its Application for Adaptive Radiotherapy , 2014, MICCAI.

[28]  Jérémie Dequidt,et al.  Framework for online simulation of soft robots with optimization-based inverse model , 2016, 2016 IEEE International Conference on Simulation, Modeling, and Programming for Autonomous Robots (SIMPAR).

[29]  D. Hill,et al.  Non-rigid image registration: theory and practice. , 2004, The British journal of radiology.

[30]  Baining Guo,et al.  Simulation and control of skeleton-driven soft body characters , 2013, ACM Trans. Graph..

[31]  Cecilia Laschi,et al.  A feed-forward neural network learning the inverse kinetics of a soft cable-driven manipulator moving in three-dimensional space , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Cecilia Laschi,et al.  A two dimensional inverse kinetics model of a cable driven manipulator inspired by the octopus arm , 2012, 2012 IEEE International Conference on Robotics and Automation.

[33]  Christian Duriez,et al.  Real-time simulation of hydraulic components for interactive control of soft robots , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[34]  M. V. D. Panne,et al.  Sampling-based contact-rich motion control , 2010, ACM Trans. Graph..

[35]  Shinichi Hirai,et al.  Crawling and Jumping by a Deformable Robot , 2006, Int. J. Robotics Res..

[36]  Nancy S. Pollard,et al.  Direct Control of Simulated Nonhuman Characters , 2011, IEEE Computer Graphics and Applications.

[37]  Daniel Ralph,et al.  Multiplier convergence in trust-region methods with application to convergence of decomposition methods for MPECs , 2007, Math. Program..

[38]  M. Anitescu,et al.  Formulating Dynamic Multi-Rigid-Body Contact Problems with Friction as Solvable Linear Complementarity Problems , 1997 .

[39]  Junggon Kim,et al.  Direct Control of Simulated Nonhuman Characters , 2011 .

[40]  Ariel Shamir,et al.  Inverse Kinematics Techniques in Computer Graphics: A Survey , 2018, Comput. Graph. Forum.

[41]  Paolo Cignoni,et al.  Elastic textures for additive fabrication , 2015, ACM Trans. Graph..

[42]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[43]  Jérémie Dequidt,et al.  Interactive Simulation of Embolization Coils: Modeling and Experimental Validation , 2008, MICCAI.

[44]  Richard P. Paul,et al.  Robot manipulators : mathematics, programming, and control : the computer control of robot manipulators , 1981 .

[45]  脇元 修一,et al.  IEEE International Conference on Robotics and Automation (ICRA) におけるフルードパワー技術の研究動向 , 2011 .

[46]  Bernd Bickel,et al.  FlexMolds , 2016, ACM Trans. Graph..

[47]  D. Caleb Rucker,et al.  Toward parallel continuum manipulators , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[48]  Soha Hassoun,et al.  Evolving soft robotic locomotion in PhysX , 2009, GECCO '09.

[49]  Eitan Grinspun,et al.  Computational design of linkage-based characters , 2014, ACM Trans. Graph..

[50]  Justin E. Seipel,et al.  Conformable actuation and sensing with robotic fabric , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[51]  Stephane Cotin,et al.  Constraint-Based Haptic Rendering of Multirate Compliant Mechanisms , 2011, IEEE Transactions on Haptics.

[52]  Wojciech Matusik,et al.  Two-Scale Topology Optimization with Microstructures , 2017, TOGS.

[53]  Gregory S. Chirikjian,et al.  The Kinematics of Hyper-Redundant Robots , 1998 .

[54]  Stephane Cotin,et al.  Asynchronous Preconditioners for Efficient Solving of Non-linear Deformations , 2010, VRIPHYS.

[55]  Johannes F. Broenink,et al.  Simulation, Modeling, and Programming for Autonomous Robots , 2014, Lecture Notes in Computer Science.

[56]  Paolo Baerlocher,et al.  Inverse kinematics techniques of the interactive posture control of articulated figures , 2001 .

[57]  Benjamin Schrauwen,et al.  Design and control of compliant tensegrity robots through simulation and hardware validation , 2014, Journal of The Royal Society Interface.

[58]  Sylvain Lefebvre,et al.  Procedural voronoi foams for additive manufacturing , 2016, ACM Trans. Graph..

[59]  Ian D. Walker,et al.  Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots , 2003, J. Field Robotics.

[60]  Jan Peters,et al.  Model learning for robot control: a survey , 2011, Cognitive Processing.

[61]  Hod Lipson,et al.  Evolving Soft Robots in Tight Spaces , 2015, GECCO.

[62]  Filip Ilievski,et al.  Soft robotics for chemists. , 2011, Angewandte Chemie.

[63]  CianchettiMatteo,et al.  A Bioinspired Soft Robotic Gripper for Adaptable and Effective Grasping , 2015 .

[64]  Athanasios S. Polydoros,et al.  Real-time deep learning of robotic manipulator inverse dynamics , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[65]  Norman I. Badler,et al.  Real-Time Inverse Kinematics Techniques for Anthropomorphic Limbs , 2000, Graph. Model..

[66]  Mariette Yvinec,et al.  Variational tetrahedral meshing , 2005, ACM Trans. Graph..

[67]  Christian Kirches,et al.  qpOASES: a parametric active-set algorithm for quadratic programming , 2014, Mathematical Programming Computation.

[68]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[69]  S. Shankar Sastry,et al.  Three-dimensional Motion Planning Algorithms for Steerable Needles Using Inverse Kinematics , 2010, Int. J. Robotics Res..

[70]  Scott Kuindersma,et al.  Modeling and Control of Legged Robots , 2016, Springer Handbook of Robotics, 2nd Ed..

[71]  F. Faure,et al.  Volume contact constraints at arbitrary resolution , 2010, ACM Trans. Graph..

[72]  Howie Choset,et al.  Continuum Robots for Medical Applications: A Survey , 2015, IEEE Transactions on Robotics.

[73]  Jérémie Dequidt,et al.  Visual servoing control of soft robots based on finite element model , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[74]  Heinrich M. Jaeger,et al.  JSEL: Jamming Skin Enabled Locomotion , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[75]  Ashish Dutta,et al.  Grasping and Manipulation of Deformable Objects Based on Internal Force Requirements , 2006 .

[76]  Stephane Cotin,et al.  Augmented reality for cryoablation procedures , 2015, SIGGRAPH Posters.

[77]  Aaron Hertzmann,et al.  Style-based inverse kinematics , 2004, ACM Trans. Graph..

[78]  Stephane Cotin,et al.  New Approaches to Catheter Navigation for Interventional Radiology Simulation , 2005, MICCAI.

[79]  Pierre E. Dupont,et al.  A Steerable Needle Technology Using Curved Concentric Tubes , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[80]  Allison M. Okamura,et al.  Modeling of Tool-Tissue Interactions for Computer-Based Surgical Simulation: A Literature Review , 2008, PRESENCE: Teleoperators and Virtual Environments.

[81]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[82]  Shoichi Iikura,et al.  Development of flexible microactuator and its applications to robotic mechanisms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[83]  LipsonHod,et al.  Dynamic Simulation of Soft Multimaterial 3D-Printed Objects , 2014 .

[84]  Kevin Blankespoor,et al.  BigDog, the Rough-Terrain Quadruped Robot , 2008 .

[85]  R. Wood,et al.  Meshworm: A Peristaltic Soft Robot With Antagonistic Nickel Titanium Coil Actuators , 2013, IEEE/ASME Transactions on Mechatronics.

[86]  Timothy Bretl,et al.  Multi-Step Motion Planning for Free-Climbing Robots , 2004, WAFR.

[87]  Miguel A. Otaduy,et al.  Design and fabrication of flexible rod meshes , 2015, ACM Trans. Graph..

[88]  D. Caleb Rucker,et al.  Efficient computation of multiple coupled Cosserat rod models for real-time simulation and control of parallel continuum manipulators , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[89]  Michael C. Yip,et al.  Model-Less Feedback Control of Continuum Manipulators in Constrained Environments , 2014, IEEE Transactions on Robotics.

[90]  Katta G. Murty,et al.  On the number of solutions to the complementarity problem and spanning properties of complementary cones , 1972 .

[91]  James M. Bern,et al.  Interactive design of animated plushies , 2017, ACM Trans. Graph..

[92]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[93]  Koichi Suzumori,et al.  Elastic materials producing compliant robots , 1996, Robotics Auton. Syst..

[94]  Cosimo Della Santina,et al.  Dynamic control of soft robots interacting with the environment , 2018, 2018 IEEE International Conference on Soft Robotics (RoboSoft).

[95]  Norman I. Badler,et al.  Real-Time Inverse Kinematics of the Human Arm , 1996, Presence: Teleoperators & Virtual Environments.

[96]  Michael C. Yip,et al.  Model-Less Hybrid Position/Force Control: A Minimalist Approach for Continuum Manipulators in Unknown, Constrained Environments , 2016, IEEE Robotics and Automation Letters.

[97]  Christian Duriez,et al.  SOFA: A Multi-Model Framework for Interactive Physical Simulation , 2012 .

[98]  Bernd Bickel,et al.  DefSense: Computational Design of Customized Deformable Input Devices , 2016, CHI.

[99]  野間 春生,et al.  Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems 参加報告 , 1997 .

[100]  Taku Komura,et al.  Phase-functioned neural networks for character control , 2017, ACM Trans. Graph..

[101]  Katia Bertoldi,et al.  Kirigami skins make a simple soft actuator crawl , 2018, Science Robotics.

[102]  Alexander Herzog,et al.  Momentum control with hierarchical inverse dynamics on a torque-controlled humanoid , 2014, Autonomous Robots.

[103]  Christian Duriez,et al.  Control of elastic soft robots based on real-time finite element method , 2013, 2013 IEEE International Conference on Robotics and Automation.

[104]  John E. Mitchell,et al.  On convex quadratic programs with linear complementarity constraints , 2013, Comput. Optim. Appl..

[105]  Vishesh Vikas,et al.  Design and Locomotion Control of a Soft Robot Using Friction Manipulation and Motor–Tendon Actuation , 2015, IEEE Transactions on Robotics.

[106]  Norman I. Badler,et al.  Inverse kinematics positioning using nonlinear programming for highly articulated figures , 1994, TOGS.

[107]  Hao Jiang,et al.  A two-level approach for solving the inverse kinematics of an extensible soft arm considering viscoelastic behavior , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[108]  DONALD GOLDFARB,et al.  AN ACTIVE SET METHOD FOR MATHEMATICAL PROGRAMS WITH LINEAR COMPLEMENTARITY CONSTRAINTS , 2007 .

[109]  P. Smagt van der,et al.  Neural Systems for Robotics , 2012 .

[110]  Cecilia Laschi,et al.  Neural Network and Jacobian Method for Solving the Inverse Statics of a Cable-Driven Soft Arm With Nonconstant Curvature , 2015, IEEE Transactions on Robotics.

[111]  Ian D. Walker,et al.  Closed-Form Inverse Kinematics for Continuum Manipulators , 2009, Adv. Robotics.

[112]  Cecilia Laschi,et al.  Control Strategies for Soft Robotic Manipulators: A Survey. , 2018, Soft robotics.

[113]  Andreas Aristidou,et al.  FABRIK: A fast, iterative solver for the Inverse Kinematics problem , 2011, Graph. Model..

[114]  Dong Jin Hyun,et al.  High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah , 2014, Int. J. Robotics Res..

[115]  Nancy S. Pollard,et al.  Fast simulation of skeleton-driven deformable body characters , 2011, TOGS.

[116]  Ronan Boulic,et al.  Task-priority formulations for the kinematic control of highly redundant articulated structures , 1998, Proceedings. 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems. Innovations in Theory, Practice and Applications (Cat. No.98CH36190).

[117]  R. M. Natal Jorge,et al.  A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone‐Rubber and Soft Tissues , 2006 .

[118]  Heinrich M. Jaeger,et al.  Jamming as an enabling technology for soft robotics , 2010, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[119]  Daniel D. Lee,et al.  Multiplicative Updates for Nonnegative Quadratic Programming in Support Vector Machines , 2002, NIPS.

[120]  Wolfgang Straßer,et al.  Corotational Simulation of Deformable Solids , 2004, WSCG.

[121]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[122]  Russ Tedrake,et al.  Direct Trajectory Optimization of Rigid Body Dynamical Systems through Contact , 2012, WAFR.

[123]  Kyu-Jin Cho,et al.  The Deformable Wheel Robot Using Magic-Ball Origami Structure , 2013 .

[124]  Ronald Fedkiw,et al.  Automatic determination of facial muscle activations from sparse motion capture marker data , 2005, SIGGRAPH '05.

[125]  Karim Abdel-Malek,et al.  Dynamic motion planning of 3D human locomotion using gradient-based optimization. , 2008, Journal of biomechanical engineering.

[126]  Kun Zhou,et al.  Computational design and fabrication of soft pneumatic objects with desired deformations , 2017, ACM Trans. Graph..

[127]  Pierre E. Dupont,et al.  Design and Control of Concentric-Tube Robots , 2010, IEEE Transactions on Robotics.

[128]  Allison M. Okamura,et al.  A soft robot that navigates its environment through growth , 2017, Science Robotics.

[129]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[130]  Bernhard Thomaszewski,et al.  Metasilicone: design and fabrication of composite silicone with desired mechanical properties , 2017, ACM Trans. Graph..

[131]  Daniel E. Whitney,et al.  Resolved Motion Rate Control of Manipulators and Human Prostheses , 1969 .

[132]  Jing Hu,et al.  On linear programs with linear complementarity constraints , 2011, Journal of Global Optimization.

[133]  Bram Vanderborght,et al.  Self-healing soft pneumatic robots , 2017, Science Robotics.

[134]  C. Duriez,et al.  New approaches to catheter navigation for interventional radiology simulation , 2006, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[135]  Dinesh K. Pai,et al.  Musculotendon simulation for hand animation , 2008, ACM Trans. Graph..

[136]  Barry Hilary Valentine Topping,et al.  Finite Element Mesh Generation , 2002 .

[137]  Hervé Delingette,et al.  Towards an interactive electromechanical model of the heart , 2013, Interface Focus.

[138]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[139]  Rochdi Merzouki,et al.  Adaptive Neural Network Control of a Compact Bionic Handling Arm , 2015, IEEE/ASME Transactions on Mechatronics.

[140]  Hod Lipson,et al.  Unshackling evolution: evolving soft robots with multiple materials and a powerful generative encoding , 2013, GECCO '13.

[141]  Chih-Cheng Chen,et al.  A combined optimization method for solving the inverse kinematics problems of mechanical manipulators , 1991, IEEE Trans. Robotics Autom..

[142]  CianchettiMatteo,et al.  Learning Closed Loop Kinematic Controllers for Continuum Manipulators in Unstructured Environments. , 2017, Soft robotics.

[143]  Samuel R. Buss,et al.  Selectively Damped Least Squares for Inverse Kinematics , 2005, J. Graph. Tools.

[144]  Matteo Cianchetti,et al.  Learning Global Inverse Statics Solution for a Redundant Soft Robot , 2016, ICINCO.

[145]  Taku Komura,et al.  A Deep Learning Framework for Character Motion Synthesis and Editing , 2016, ACM Trans. Graph..

[146]  Daniel M. Vogt,et al.  Embedded 3D Printing of Strain Sensors within Highly Stretchable Elastomers , 2014, Advanced materials.

[147]  Pierre-Brice Wieber,et al.  Fast resolution of hierarchized inverse kinematics with inequality constraints , 2010, 2010 IEEE International Conference on Robotics and Automation.

[148]  Markus H. Gross,et al.  Interactive Virtual Materials , 2004, Graphics Interface.

[149]  James C. Weaver,et al.  Soft robotic sleeve supports heart function , 2017, Science Translational Medicine.

[150]  Jérémie Dequidt,et al.  Real-time control of soft-robots using asynchronous finite element modeling , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[151]  Andrew Nealen,et al.  Physically Based Deformable Models in Computer Graphics , 2006, Comput. Graph. Forum.

[152]  Daniela Rus,et al.  Design, kinematics, and control of a soft spatial fluidic elastomer manipulator , 2016, Int. J. Robotics Res..

[153]  Robert J. Webster,et al.  Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review , 2010, Int. J. Robotics Res..

[154]  C. Karen Liu,et al.  Soft body locomotion , 2012, ACM Trans. Graph..

[155]  Matthew A. Robertson,et al.  New soft robots really suck: Vacuum-powered systems empower diverse capabilities , 2017, Science Robotics.

[156]  Burak Erman,et al.  Structures and properties of rubberlike networks , 1997 .

[157]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[158]  Jérémie Dequidt,et al.  Software toolkit for modeling, simulation, and control of soft robots , 2017, Adv. Robotics.

[159]  Bruno Siciliano,et al.  Kinematic control of redundant robot manipulators: A tutorial , 1990, J. Intell. Robotic Syst..

[160]  S. Buss Introduction to Inverse Kinematics with Jacobian Transpose , Pseudoinverse and Damped Least Squares methods , 2004 .

[161]  Steve Marschner,et al.  Microstructures to control elasticity in 3D printing , 2015, ACM Trans. Graph..

[162]  Doug L. James,et al.  Fabricating articulated characters from skinned meshes , 2012, ACM Trans. Graph..

[163]  Nathan Ida,et al.  Introduction to the Finite Element Method , 1997 .

[164]  Thomas J. Wallin,et al.  3D printing of soft robotic systems , 2018, Nature Reviews Materials.

[165]  Ian D. Walker,et al.  Overview of damped least-squares methods for inverse kinematics of robot manipulators , 1995, J. Intell. Robotic Syst..

[166]  Jernej Barbic,et al.  Vega: Non‐Linear FEM Deformable Object Simulator , 2013, Comput. Graph. Forum.

[167]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[168]  Jérémie Dequidt,et al.  Registration by interactive inverse simulation: application for adaptive radiotherapy , 2015, International Journal of Computer Assisted Radiology and Surgery.

[169]  Jan Peters,et al.  Learning inverse dynamics models with contacts , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[170]  Kaspar Althoefer,et al.  Three-Degree-of-Freedom MR-Compatible Multisegment Cardiac Catheter Steering Mechanism , 2016, IEEE Transactions on Biomedical Engineering.

[171]  Kaspar Althoefer,et al.  New kinematic multi-section model for catheter contact force estimation and steering , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[172]  Ian D. Walker,et al.  A Neural Network Controller for Continuum Robots , 2007, IEEE Transactions on Robotics.

[173]  Daniel M. Vogt,et al.  Design and Characterization of a Soft Multi-Axis Force Sensor Using Embedded Microfluidic Channels , 2013, IEEE Sensors Journal.

[174]  Radhe Mohan,et al.  Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. , 2004, International journal of radiation oncology, biology, physics.