The nested Chinese restaurant process and Bayesian inference of topic hierarchies
暂无分享,去创建一个
[1] David G. Stork,et al. Pattern Classification , 1973 .
[2] T. Ferguson. A Bayesian Analysis of Some Nonparametric Problems , 1973 .
[3] C. Antoniak. Mixtures of Dirichlet Processes with Applications to Bayesian Nonparametric Problems , 1974 .
[4] Samuel Kotz,et al. Urn Models and Their Applications: An Approach to Modern Discrete Probability Theory , 1978, The Mathematical Gazette.
[5] Donald Geman,et al. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[6] D. Aldous. Exchangeability and related topics , 1985 .
[7] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[8] Andrew V. Goldberg,et al. A new approach to the maximum flow problem , 1986, STOC '86.
[9] Richard A. Harshman,et al. Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..
[10] Adrian F. M. Smith,et al. Sampling-Based Approaches to Calculating Marginal Densities , 1990 .
[11] J. Sethuraman. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[12] Jayaran Sethuramant. A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .
[13] Jun S. Liu,et al. The Collapsed Gibbs Sampler in Bayesian Computations with Applications to a Gene Regulation Problem , 1994 .
[14] M. Escobar,et al. Bayesian Density Estimation and Inference Using Mixtures , 1995 .
[15] Daphne Koller,et al. Hierarchically Classifying Documents Using Very Few Words , 1997, ICML.
[16] S. MacEachern,et al. Estimating mixture of dirichlet process models , 1998 .
[17] Oren Etzioni,et al. Web document clustering: a feasibility demonstration , 1998, SIGIR '98.
[18] Prabhakar Raghavan,et al. Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies , 1998, The VLDB Journal.
[19] W. Bruce Croft,et al. Deriving concept hierarchies from text , 1999, SIGIR '99.
[20] Thomas Hofmann,et al. The Cluster-Abstraction Model: Unsupervised Learning of Topic Hierarchies from Text Data , 1999, IJCAI.
[21] Chinatsu Aone,et al. Fast and effective text mining using linear-time document clustering , 1999, KDD '99.
[22] Andrew McCallum,et al. Building Domain-Specific Search Engines with Machine Learning Techniques , 1999 .
[23] Albert,et al. Emergence of scaling in random networks , 1999, Science.
[24] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[25] Radford M. Neal. Markov Chain Sampling Methods for Dirichlet Process Mixture Models , 2000 .
[26] Susan T. Dumais,et al. Hierarchical classification of Web content , 2000, SIGIR '00.
[27] Shivakumar Vaithyanathan,et al. Model-Based Hierarchical Clustering , 2000, UAI.
[28] Shigeo Abe DrEng. Pattern Classification , 2001, Springer London.
[29] Stuart J. Russell,et al. Approximate inference for first-order probabilistic languages , 2001, IJCAI.
[30] Mihaela Enachescu,et al. Variations on Random Graph Models for the Web , 2001 .
[31] S. Redner,et al. Organization of growing random networks. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.
[32] Albert-László Barabási,et al. Statistical mechanics of complex networks , 2001, ArXiv.
[33] Thorsten Joachims,et al. Learning to classify text using support vector machines - methods, theory and algorithms , 2002, The Kluwer international series in engineering and computer science.
[34] Thomas L. Griffiths,et al. Hierarchical Topic Models and the Nested Chinese Restaurant Process , 2003, NIPS.
[35] Eric R. Ziegel,et al. The Elements of Statistical Learning , 2003, Technometrics.
[36] Michael I. Jordan,et al. Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..
[37] Thomas L. Griffiths,et al. The Author-Topic Model for Authors and Documents , 2004, UAI.
[38] Marti A. Hearst,et al. Nearly-Automated Metadata Hierarchy Creation , 2004, NAACL.
[39] Mark Steyvers,et al. Finding scientific topics , 2004, Proceedings of the National Academy of Sciences of the United States of America.
[40] Thomas L. Griffiths,et al. Interpolating between types and tokens by estimating power-law generators , 2005, NIPS.
[41] Thomas L. Griffiths,et al. Infinite latent feature models and the Indian buffet process , 2005, NIPS.
[42] Christian P. Robert,et al. Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .
[43] Antonio Torralba,et al. Describing Visual Scenes using Transformed Dirichlet Processes , 2005, NIPS.
[44] Pietro Perona,et al. A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).
[45] Stuart J. Russell,et al. Approximate Inference for Infinite Contingent Bayesian Networks , 2005, AISTATS.
[46] Katherine A. Heller,et al. Bayesian hierarchical clustering , 2005, ICML.
[47] Steffen Staab,et al. Learning Concept Hierarchies from Text Corpora using Formal Concept Analysis , 2005, J. Artif. Intell. Res..
[48] Alexei A. Efros,et al. Using Multiple Segmentations to Discover Objects and their Extent in Image Collections , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).
[49] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[50] John D. Lafferty,et al. Dynamic topic models , 2006, ICML.
[51] Thomas L. Griffiths,et al. Contextual Dependencies in Unsupervised Word Segmentation , 2006, ACL.
[52] Kiyosi Itô,et al. Essentials of Stochastic Processes , 2006 .
[53] Michael I. Jordan,et al. Hierarchical Dirichlet Processes , 2006 .
[54] Padhraic Smyth,et al. Statistical entity-topic models , 2006, KDD '06.
[55] Max Welling,et al. Accelerated Variational Dirichlet Process Mixtures , 2006, NIPS.
[56] Thomas L. Griffiths,et al. Adaptor Grammars: A Framework for Specifying Compositional Nonparametric Bayesian Models , 2006, NIPS.
[57] Michael I. Jordan,et al. Variational inference for Dirichlet process mixtures , 2006 .
[58] Jason A. Duan,et al. Generalized spatial dirichlet process models , 2007 .
[59] Thomas L. Griffiths,et al. Probabilistic Topic Models , 2007 .
[60] Roded Sharan,et al. Bayesian haplo-type inference via the dirichlet process , 2004, ICML.
[61] Michael I. Jordan,et al. Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.
[62] Wei Li,et al. Nonparametric Bayes Pachinko Allocation , 2007, UAI.
[63] Yee Whye Teh,et al. Stick-breaking Construction for the Indian Buffet Process , 2007, AISTATS.
[64] Steffen Bickel,et al. Unsupervised prediction of citation influences , 2007, ICML '07.
[65] Dan Klein,et al. The Infinite PCFG Using Hierarchical Dirichlet Processes , 2007, EMNLP.
[66] Andrew McCallum,et al. Organizing the OCA: learning faceted subjects from a library of digital books , 2007, JCDL '07.
[67] John D. Lafferty,et al. A correlated topic model of Science , 2007, 0708.3601.
[68] David Poole,et al. Logical Generative Models for Probabilistic Reasoning about Existence, Roles and Identity , 2007, AAAI.