Visual place recognition: A survey from deep learning perspective

[1]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[2]  Huimin Lu,et al.  Two novel real-time local visual features for omnidirectional vision , 2010, Pattern Recognit..

[3]  Yubin Kuang,et al.  Mapillary Street-Level Sequences: A Dataset for Lifelong Place Recognition , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Ronan Sicre,et al.  Particular object retrieval with integral max-pooling of CNN activations , 2015, ICLR.

[5]  Bernt Schiele,et al.  What Makes for Effective Detection Proposals? , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Barbara Caputo,et al.  Learning Deep NBNN Representations for Robust Place Categorization , 2017, IEEE Robotics and Automation Letters.

[7]  Cyrill Stachniss,et al.  SemanticKITTI: A Dataset for Semantic Scene Understanding of LiDAR Sequences , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Tara N. Sainath,et al.  Deep Neural Networks for Acoustic Modeling in Speech Recognition: The Shared Views of Four Research Groups , 2012, IEEE Signal Processing Magazine.

[9]  Michael Milford,et al.  Semantic–geometric visual place recognition: a new perspective for reconciling opposing views , 2019, Int. J. Robotics Res..

[10]  Renaud Dubé,et al.  SegMatch: Segment based place recognition in 3D point clouds , 2016, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[11]  Hong Yan,et al.  Directional Statistics-based Deep Metric Learning for Image Classification and Retrieval , 2018, Pattern Recognit..

[12]  Michael Bosse,et al.  Trajectory-Based Place-Recognition for Efficient Large Scale Localization , 2017, International Journal of Computer Vision.

[13]  Valérie Gouet-Brunet,et al.  A survey on Visual-Based Localization: On the benefit of heterogeneous data , 2018, Pattern Recognit..

[14]  Pascal Fua,et al.  SLIC Superpixels Compared to State-of-the-Art Superpixel Methods , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  H. Abdi,et al.  Principal component analysis , 2010 .

[16]  Álvaro García-Martín,et al.  Semantic-Aware Scene Recognition , 2020, Pattern Recognit..

[17]  Roberto Cipolla,et al.  Understanding RealWorld Indoor Scenes with Synthetic Data , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Paul Newman,et al.  SLAM-Loop Closing with Visually Salient Features , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[19]  Nir Ailon,et al.  Deep Metric Learning Using Triplet Network , 2014, SIMBAD.

[20]  Abel Gawel,et al.  Point cloud descriptors for place recognition using sparse visual information , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[21]  Rajat Raina,et al.  Large-scale deep unsupervised learning using graphics processors , 2009, ICML '09.

[22]  Kai Ma,et al.  Enhancing Place Recognition Using Joint Intensity - Depth Analysis and Synthetic Data , 2016, ECCV Workshops.

[23]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[24]  Yan Su,et al.  Loop closure detection for visual SLAM systems using convolutional neural network , 2017, 2017 23rd International Conference on Automation and Computing (ICAC).

[25]  Leonidas J. Guibas,et al.  PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Ian D. Reid,et al.  Automatic Relocalization and Loop Closing for Real-Time Monocular SLAM , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Atsuto Maki,et al.  From generic to specific deep representations for visual recognition , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[28]  Lingqiao Liu,et al.  Learning Context Flexible Attention Model for Long-Term Visual Place Recognition , 2018, IEEE Robotics and Automation Letters.

[29]  Hau-San Wong,et al.  Simplified unsupervised image translation for semantic segmentation adaptation , 2020, Pattern Recognit..

[30]  Cordelia Schmid,et al.  Beyond Bags of Features: Spatial Pyramid Matching for Recognizing Natural Scene Categories , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[31]  Xuejun Yang,et al.  CNN Feature boosted SeqSLAM for Real-Time Loop Closure Detection , 2017, ArXiv.

[32]  Luz Abril Torres-Méndez,et al.  Learning ad-hoc Compact Representations from Salient Landmarks for Visual Place Recognition in Underwater Environments , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[33]  Niko Sünderhauf,et al.  On the performance of ConvNet features for place recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[34]  Tao Lu,et al.  Localizing Discriminative Visual Landmarks for Place Recognition , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[35]  Svetlana Lazebnik,et al.  Multi-scale Orderless Pooling of Deep Convolutional Activation Features , 2014, ECCV.

[36]  Horst Bischof,et al.  Diffusion Processes for Retrieval Revisited , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  Qi Tian,et al.  SIFT Meets CNN: A Decade Survey of Instance Retrieval , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[38]  Vladlen Koltun,et al.  Geodesic Object Proposals , 2014, ECCV.

[39]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[40]  Paul Newman,et al.  1 year, 1000 km: The Oxford RobotCar dataset , 2017, Int. J. Robotics Res..

[41]  Guoquan Huang,et al.  Lightweight Unsupervised Deep Loop Closure , 2018, Robotics: Science and Systems.

[42]  Margarita Chli,et al.  Viewpoint-Tolerant Place Recognition Combining 2D and 3D Information for UAV Navigation , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[43]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[44]  Pascal Vincent,et al.  Stacked Denoising Autoencoders: Learning Useful Representations in a Deep Network with a Local Denoising Criterion , 2010, J. Mach. Learn. Res..

[45]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[46]  Yan Su,et al.  Graph-Based Place Recognition in Image Sequences with CNN Features , 2018, Journal of Intelligent & Robotic Systems.

[47]  Paul Newman,et al.  FAB-MAP: Probabilistic Localization and Mapping in the Space of Appearance , 2008, Int. J. Robotics Res..

[48]  Trevor Darrell,et al.  Caffe: Convolutional Architecture for Fast Feature Embedding , 2014, ACM Multimedia.

[49]  Patrick Pantel,et al.  Randomized Algorithms and NLP: Using Locality Sensitive Hash Functions for High Speed Noun Clustering , 2005, ACL.

[50]  Yihong Wu,et al.  Deep Supervised Hashing with Similar Hierarchy for Place Recognition , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[51]  Jürgen Schmidhuber,et al.  Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction , 2011, ICANN.

[52]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[53]  Cyrill Stachniss,et al.  Lazy Data Association For Image Sequences Matching Under Substantial Appearance Changes , 2016, IEEE Robotics and Automation Letters.

[54]  Andrew Zisserman,et al.  Three things everyone should know to improve object retrieval , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[55]  Hesheng Wang,et al.  LPD-Net: 3D Point Cloud Learning for Large-Scale Place Recognition and Environment Analysis , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[56]  Federico Tombari,et al.  CNN-SLAM: Real-Time Dense Monocular SLAM with Learned Depth Prediction , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[57]  Camille Couprie,et al.  Learning Hierarchical Features for Scene Labeling , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[58]  Ajay Narendra,et al.  A Hybrid Compact Neural Architecture for Visual Place Recognition , 2020, IEEE Robotics and Automation Letters.

[59]  Bo Du,et al.  Ensemble manifold regularized sparse low-rank approximation for multiview feature embedding , 2015, Pattern Recognit..

[60]  Paolo Valigi,et al.  A transfer learning approach for multi-cue semantic place recognition , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[61]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[62]  Lucas M. Longaray,et al.  Towards comparison of underwater SLAM methods: An open dataset collection , 2016, OCEANS 2016 MTS/IEEE Monterey.

[63]  Wolfram Burgard,et al.  Self-Supervised Model Adaptation for Multimodal Semantic Segmentation , 2018, International Journal of Computer Vision.

[64]  Weilin Huang,et al.  Deep Metric Learning with Hierarchical Triplet Loss , 2018, ECCV.

[65]  Michael Milford,et al.  Filter Early, Match Late: Improving Network-Based Visual Place Recognition , 2019, 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[66]  Gim Hee Lee,et al.  PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[67]  Peter I. Corke,et al.  Visual Place Recognition: A Survey , 2016, IEEE Transactions on Robotics.

[68]  James M. Rehg,et al.  CENTRIST: A Visual Descriptor for Scene Categorization , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[69]  Michael Milford,et al.  LoST? Appearance-Invariant Place Recognition for Opposite Viewpoints using Visual Semantics , 2018, Robotics: Science and Systems.

[70]  Bolei Zhou,et al.  Learning Deep Features for Scene Recognition using Places Database , 2014, NIPS.

[71]  C. Lawrence Zitnick,et al.  Edge Boxes: Locating Object Proposals from Edges , 2014, ECCV.

[72]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[73]  Michael Milford,et al.  Condition-invariant, top-down visual place recognition , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[74]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[75]  Giorgos Tolias,et al.  Fine-Tuning CNN Image Retrieval with No Human Annotation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[76]  Tianzhu Zhang,et al.  Deep Multi-Modality Adversarial Networks for Unsupervised Domain Adaptation , 2019, IEEE Transactions on Multimedia.

[77]  Jinyong Jeong,et al.  MulRan: Multimodal Range Dataset for Urban Place Recognition , 2020, 2020 IEEE International Conference on Robotics and Automation (ICRA).

[78]  Yong Guan,et al.  Manifold Regularization Graph Structure Auto-Encoder to Detect Loop Closure for Visual SLAM , 2019, IEEE Access.

[79]  Yann LeCun,et al.  Learning a similarity metric discriminatively, with application to face verification , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[80]  Michael Isard,et al.  Lost in quantization: Improving particular object retrieval in large scale image databases , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[81]  Bo Du,et al.  MeMu: Metric correlation Siamese network and multi-class negative sampling for visual tracking , 2020, Pattern Recognit..

[82]  Louis-Philippe Morency,et al.  Multimodal Machine Learning: A Survey and Taxonomy , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[83]  Wolfram Burgard,et al.  Efficient deep models for monocular road segmentation , 2016, 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[84]  Sen Wang,et al.  TextPlace: Visual Place Recognition and Topological Localization Through Reading Scene Texts , 2019, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[85]  Bernard Ghanem,et al.  Multi-task Generative Adversarial Network for Detecting Small Objects in the Wild , 2020, International Journal of Computer Vision.

[86]  Stefan Carlsson,et al.  CNN Features Off-the-Shelf: An Astounding Baseline for Recognition , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[87]  Wolfram Burgard,et al.  Robust visual SLAM across seasons , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[88]  Michael Milford,et al.  Deep learning features at scale for visual place recognition , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[89]  Zhihui Li,et al.  Visual saliency guided complex image retrieval , 2020, Pattern Recognit. Lett..

[90]  Hervé Jégou,et al.  Visual query expansion with or without geometry: Refining local descriptors by feature aggregation , 2014, Pattern Recognit..

[91]  Jonathan T. Barron,et al.  Multiscale Combinatorial Grouping , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[92]  Ryan M. Eustice,et al.  Ford Campus vision and lidar data set , 2011, Int. J. Robotics Res..

[93]  Luz Abril Torres-Méndez,et al.  Robotic Visual Tracking of Relevant Cues in Underwater Environments with Poor Visibility Conditions , 2016, J. Sensors.

[94]  Ting Liu,et al.  Recent advances in convolutional neural networks , 2015, Pattern Recognit..

[95]  Kostas Alexis,et al.  Are State-of-the-art Visual Place Recognition Techniques any Good for Aerial Robotics? , 2019, ArXiv.

[96]  Toby P. Breckon,et al.  Generative adversarial framework for depth filling via Wasserstein metric, cosine transform and domain transfer , 2019, Pattern Recognit..

[97]  David Stutz,et al.  Neural Codes for Image Retrieval , 2015 .

[98]  Albert Gordo,et al.  Deep Image Retrieval: Learning Global Representations for Image Search , 2016, ECCV.

[99]  Yanqing Wang,et al.  Real-Time Visual Place Recognition Based on Analyzing Distribution of Multi-scale CNN Landmarks , 2018, Journal of Intelligent & Robotic Systems.

[100]  Wolfram Burgard,et al.  3-D Mapping With an RGB-D Camera , 2014, IEEE Transactions on Robotics.

[101]  Trevor Darrell,et al.  DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition , 2013, ICML.

[102]  Abel Gawel,et al.  Local Descriptor for Robust Place Recognition Using LiDAR Intensity , 2018, IEEE Robotics and Automation Letters.

[103]  Bo Li,et al.  Monocular Depth Estimation with Hierarchical Fusion of Dilated CNNs and Soft-Weighted-Sum Inference , 2017, Pattern Recognit..

[104]  Andrew Calway,et al.  Visual Place Recognition Using Landmark Distribution Descriptors , 2016, ACCV.

[105]  Chenyang Zhao,et al.  End-To-End Visual Place Recognition Based on Deep Metric Learning and Self-Adaptively Enhanced Similarity Metric , 2019, 2019 IEEE International Conference on Image Processing (ICIP).

[106]  Geoffrey E. Hinton,et al.  Dynamic Routing Between Capsules , 2017, NIPS.

[107]  Ondrej Chum,et al.  CNN Image Retrieval Learns from BoW: Unsupervised Fine-Tuning with Hard Examples , 2016, ECCV.

[108]  Paul Newman,et al.  Adversarial Training for Adverse Conditions: Robust Metric Localisation Using Appearance Transfer , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[109]  Federico Tombari,et al.  Unique Signatures of Histograms for Local Surface Description , 2010, ECCV.

[110]  Dragomir Anguelov,et al.  Scalability in Perception for Autonomous Driving: Waymo Open Dataset , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[111]  Michael Milford,et al.  Convolutional Neural Network-based Place Recognition , 2014, ICRA 2014.

[112]  Cordelia Schmid,et al.  Aggregating local descriptors into a compact image representation , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[113]  Nicolas Pugeault,et al.  SeDAR: Reading Floorplans Like a Human—Using Deep Learning to Enable Human-Inspired Localisation , 2019, International Journal of Computer Vision.

[114]  Yasir Latif,et al.  Robust loop closing over time for pose graph SLAM , 2013, Int. J. Robotics Res..

[115]  Ian D. Reid,et al.  RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[116]  Masatoshi Okutomi,et al.  Visual Place Recognition with Repetitive Structures , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[117]  Jiandong Tian,et al.  RGBD Salient Object Detection via Deep Fusion , 2016, IEEE Transactions on Image Processing.

[118]  Xiaogang Wang,et al.  StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[119]  Torsten Sattler,et al.  Semantic Visual Localization , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[120]  Jan-Michael Frahm,et al.  Learned Contextual Feature Reweighting for Image Geo-Localization , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[121]  Jun Li,et al.  Landmark Generation in Visual Place Recognition Using Multi-Scale Sliding Window for Robotics , 2019, Applied Sciences.

[122]  Alberto Ortiz,et al.  Hierarchical Place Recognition for Topological Mapping , 2017, IEEE Transactions on Robotics.

[123]  Philip H. S. Torr,et al.  BING: Binarized normed gradients for objectness estimation at 300fps , 2014, Computational Visual Media.

[124]  Chung-Hsien Wu,et al.  Attention-based convolutional neural network and long short-term memory for short-term detection of mood disorders based on elicited speech responses , 2019, Pattern Recognit..

[125]  Nanning Zheng,et al.  Person Re-identification by Multi-Channel Parts-Based CNN with Improved Triplet Loss Function , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[126]  Sebastian Ramos,et al.  The Cityscapes Dataset for Semantic Urban Scene Understanding , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[127]  Yuqing He,et al.  A Multi-Domain Feature Learning Method for Visual Place Recognition , 2019, 2019 International Conference on Robotics and Automation (ICRA).

[128]  Zhao Zhang,et al.  Visual Localization by Place Recognition Based on Multifeature (D-λLBP++HOG) , 2017, J. Sensors.

[129]  Dongbing Gu,et al.  Indoor Relocalization in Challenging Environments With Dual-Stream Convolutional Neural Networks , 2018, IEEE Transactions on Automation Science and Engineering.

[130]  Torsten Sattler,et al.  A Cross-Season Correspondence Dataset for Robust Semantic Segmentation , 2019, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[131]  Ryan M. Eustice,et al.  University of Michigan North Campus long-term vision and lidar dataset , 2016, Int. J. Robotics Res..

[132]  Dumitru Erhan,et al.  Going deeper with convolutions , 2014, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[133]  Kunio Kashino,et al.  Query Expansion with Diffusion On Mutual Rank Graphs , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[134]  Alan L. Yuille,et al.  Towards unified depth and semantic prediction from a single image , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[135]  Lars Hammarstrand,et al.  Long-Term Visual Localization Using Semantically Segmented Images , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[136]  Matti Pietikäinen,et al.  From BoW to CNN: Two Decades of Texture Representation for Texture Classification , 2018, International Journal of Computer Vision.

[137]  Weiliang Xu,et al.  Stabilize an Unsupervised Feature Learning for LiDAR-based Place Recognition , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[138]  Li Fei-Fei,et al.  ImageNet: A large-scale hierarchical image database , 2009, CVPR.

[139]  Antonio Torralba,et al.  Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope , 2001, International Journal of Computer Vision.

[140]  Peer Neubert,et al.  Local region detector + CNN based landmarks for practical place recognition in changing environments , 2015, 2015 European Conference on Mobile Robots (ECMR).

[141]  Masatoshi Okutomi,et al.  24/7 Place Recognition by View Synthesis , 2018, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[142]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[143]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[144]  Shoaib Ehsan,et al.  A Holistic Visual Place Recognition Approach Using Lightweight CNNs for Significant ViewPoint and Appearance Changes , 2020, IEEE Transactions on Robotics.

[145]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[146]  Tieniu Tan,et al.  MAPNet: Multi-modal attentive pooling network for RGB-D indoor scene classification , 2019, Pattern Recognit..

[147]  Jiwen Lu,et al.  MMSS: Multi-modal Sharable and Specific Feature Learning for RGB-D Object Recognition , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[148]  Wolfram Burgard,et al.  Semantics-aware visual localization under challenging perceptual conditions , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[149]  Tao Zhang,et al.  Unsupervised learning to detect loops using deep neural networks for visual SLAM system , 2017, Auton. Robots.

[150]  Michael Milford,et al.  Place Recognition with ConvNet Landmarks: Viewpoint-Robust, Condition-Robust, Training-Free , 2015, Robotics: Science and Systems.

[151]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[152]  Paul Newman,et al.  Appearance-only SLAM at large scale with FAB-MAP 2.0 , 2011, Int. J. Robotics Res..

[153]  Winston Churchill,et al.  The New College Vision and Laser Data Set , 2009, Int. J. Robotics Res..

[154]  Shulin Wang,et al.  Feature selection in machine learning: A new perspective , 2018, Neurocomputing.

[155]  Andrew W. Senior,et al.  Long short-term memory recurrent neural network architectures for large scale acoustic modeling , 2014, INTERSPEECH.

[156]  Gordon Wyeth,et al.  SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights , 2012, 2012 IEEE International Conference on Robotics and Automation.

[157]  Matti Pietikäinen,et al.  A comparative study of texture measures with classification based on featured distributions , 1996, Pattern Recognit..

[158]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[159]  Hervé Jégou,et al.  Negative Evidences and Co-occurences in Image Retrieval: The Benefit of PCA and Whitening , 2012, ECCV.

[160]  Cordelia Schmid,et al.  Aggregating Local Image Descriptors into Compact Codes , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[161]  Takeo Kanade,et al.  Visual topometric localization , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[162]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[163]  Peer Neubert,et al.  Beyond Holistic Descriptors, Keypoints, and Fixed Patches: Multiscale Superpixel Grids for Place Recognition in Changing Environments , 2016, IEEE Robotics and Automation Letters.

[164]  Peter Protzel,et al.  A Neurologically Inspired Sequence Processing Model for Mobile Robot Place Recognition , 2019, IEEE Robotics and Automation Letters.

[165]  Supun Samarasekera,et al.  Semantically-Aware Attentive Neural Embeddings for 2D Long-Term Visual Localization , 2019, BMVC.

[166]  Michael Milford,et al.  Addressing Challenging Place Recognition Tasks Using Generative Adversarial Networks , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[167]  Luigi di Stefano,et al.  Unsupervised Domain Adaptation for Depth Prediction from Images , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[168]  Sanjoy Kumar Saha,et al.  Learning Deep Representation for Place Recognition in SLAM , 2017, PReMI.

[169]  Haiyong Zheng,et al.  Discriminative Region Proposal Adversarial Network for High-Quality Image-to-Image Translation , 2019, International Journal of Computer Vision.

[170]  Jianwei Zhang,et al.  Learning motion field of LiDAR point cloud with convolutional networks , 2019, Pattern Recognit. Lett..

[171]  Min Sun,et al.  Omnidirectional CNN for Visual Place Recognition and Navigation , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[172]  David A. Clausi,et al.  Condition and Viewpoint Invariant Omni-Directional Place Recognition Using CNN , 2017, 2017 14th Conference on Computer and Robot Vision (CRV).

[173]  Gordon Wyeth,et al.  FAB-MAP + RatSLAM: Appearance-based SLAM for multiple times of day , 2010, 2010 IEEE International Conference on Robotics and Automation.

[174]  Paolo Valigi,et al.  Robust visual semi-semantic loop closure detection by a covisibility graph and CNN features , 2017, Robotics Auton. Syst..

[175]  Francisco Angel Moreno,et al.  A collection of outdoor robotic datasets with centimeter-accuracy ground truth , 2009, Auton. Robots.

[176]  Simon Osindero,et al.  Cross-Dimensional Weighting for Aggregated Deep Convolutional Features , 2015, ECCV Workshops.

[177]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[178]  Trevor Darrell,et al.  Part-Based R-CNNs for Fine-Grained Category Detection , 2014, ECCV.

[179]  Wolfram Burgard,et al.  Robust Visual Robot Localization Across Seasons Using Network Flows , 2014, AAAI.

[180]  Shilin Zhou,et al.  Evaluation of Object Proposals and ConvNet Features for Landmark-based Visual Place Recognition , 2018, J. Intell. Robotic Syst..

[181]  Victor S. Lempitsky,et al.  Aggregating Local Deep Features for Image Retrieval , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[182]  Torsten Sattler,et al.  Benchmarking 6DOF Outdoor Visual Localization in Changing Conditions , 2018, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[183]  Michael Milford,et al.  Distance metric learning for feature-agnostic place recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[184]  Derek Hoiem,et al.  Complete 3D Scene Parsing from an RGBD Image , 2018, International Journal of Computer Vision.

[185]  Jan-Michael Frahm,et al.  From single image query to detailed 3D reconstruction , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[186]  Albert Gordo,et al.  End-to-End Learning of Deep Visual Representations for Image Retrieval , 2016, International Journal of Computer Vision.

[187]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[188]  Yannis Avrithis,et al.  Efficient Diffusion on Region Manifolds: Recovering Small Objects with Compact CNN Representations , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[189]  Shilin Zhou,et al.  Convolutional neural network-based image representation for visual loop closure detection , 2015, 2015 IEEE International Conference on Information and Automation.

[190]  Henrik Andreasson,et al.  Lightweight, Viewpoint-Invariant Visual Place Recognition in Changing Environments , 2018, IEEE Robotics and Automation Letters.

[191]  Jörg Stückler,et al.  Deep Virtual Stereo Odometry: Leveraging Deep Depth Prediction for Monocular Direct Sparse Odometry , 2018, ECCV.

[192]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[193]  Patricio A. Vela,et al.  Learning binary features online from motion dynamics for incremental loop-closure detection and place recognition , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[194]  Ahmet Burak Can,et al.  Integrating global and local image features for enhanced loop closure detection in RGB-D SLAM systems , 2019, The Visual Computer.

[195]  Andrew W. Fitzgibbon,et al.  Scene Coordinate Regression Forests for Camera Relocalization in RGB-D Images , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[196]  Hao Zhang,et al.  Omnidirectional Multisensory Perception Fusion for Long-Term Place Recognition , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[197]  Oksam Chae,et al.  Simultaneous feature selection and discretization based on mutual information , 2019, Pattern Recognit..

[198]  Niko Sünderhauf,et al.  Are We There Yet? Challenging SeqSLAM on a 3000 km Journey Across All Four Seasons , 2013 .

[199]  Roberto Cipolla,et al.  PoseNet: A Convolutional Network for Real-Time 6-DOF Camera Relocalization , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[200]  Barbara Caputo,et al.  COLD: The CoSy Localization Database , 2009, Int. J. Robotics Res..

[201]  Yannis Avrithis,et al.  Panorama to Panorama Matching for Location Recognition , 2017, ICMR.

[202]  Wolfram Burgard,et al.  Robust Visual Localization Across Seasons , 2018, IEEE Transactions on Robotics.

[203]  Dorian Gálvez-López,et al.  Bags of Binary Words for Fast Place Recognition in Image Sequences , 2012, IEEE Transactions on Robotics.

[204]  W. Burgard,et al.  RAWSEEDS: Robotics Advancement through Web-publishing of Sensorial and Elaborated Extensive Data Sets , 2010 .

[205]  Inkyu Sa,et al.  Only look once, mining distinctive landmarks from ConvNet for visual place recognition , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[206]  Javier González,et al.  Appearance-invariant place recognition by discriminatively training a convolutional neural network , 2017, Pattern Recognit. Lett..