Brain reserve contributes to distinguishing preclinical Alzheimer’s stages 1 and 2
暂无分享,去创建一个
F. Jessen | K. Scheffler | P. Dechent | A. Spottke | K. Fliessbach | M. Ewers | E. Duzel | J. Wiltfang | S. Teipel | R. Perneczky | H. Schütze | A. Ramírez | B. Schott | O. Peters | D. Berron | M. Heneka | H. Gurvit | I. Kilimann | G. Ziegler | R. Yakupov | C. Laske | J. Priller | S. Hetzer | S. Roeske | A. Schneider | K. Buerger | D. Janowitz | E. Spruth | L. Dobisch | F. Brosseron | S. Wolfsgruber | D. Meiberth | B. Rauchmann | L. Kleineidam | S. D. Freiesleben | Michael Wagner | Firuze Delen | W. Glanz | N. Roy | Matthias Schmid | M. Munk | Z. Yıldırım | M. Berger | Luisa-Sophie Schneider | Hannah Baumeister | H. Baumeister | M. Wagner
[1] P. Yushkevich,et al. Deep label fusion: A generalizable hybrid multi-atlas and deep convolutional neural network for medical image segmentation , 2022, Medical Image Anal..
[2] Wilma A. Bainbridge,et al. Content-specific vulnerability of recent episodic memories in Alzheimer's disease , 2021, Neuropsychologia.
[3] Ling Yu Hung,et al. Three-dimensional mapping of neurofibrillary tangle burden in the human medial temporal lobe. , 2021, Brain : a journal of neurology.
[4] W. M. van der Flier,et al. Common variants in Alzheimer’s disease and risk stratification by polygenic risk scores , 2021, Nature Communications.
[5] Jeroen J Bos,et al. Reconciling the object and spatial processing views of the perirhinal cortex through task‐relevant unitization , 2021, Hippocampus.
[6] O. Hansson,et al. Medial temporal lobe connectivity and its associations with cognition in early Alzheimer’s disease , 2020, Brain : a journal of neurology.
[7] Michael Wagner,et al. The characterisation of subjective cognitive decline , 2020, The Lancet Neurology.
[8] John L. Robinson,et al. Characterization of hippocampal subfields using ex vivo MRI and histology data: Lessons for in vivo segmentation , 2020, Hippocampus.
[9] C. Barnes,et al. Brain reserve, cognitive reserve, compensation, and maintenance: operationalization, validity, and mechanisms of cognitive resilience , 2019, Neurobiology of Aging.
[10] David Berron,et al. Alzheimer's pathology targets distinct memory networks in the ageing brain. , 2019, Brain : a journal of neurology.
[11] Martin J. Chadwick,et al. Big-Loop Recurrence within the Hippocampal System Supports Integration of Information across Episodes , 2018, Neuron.
[12] C. Jack,et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease , 2018, Alzheimer's & Dementia.
[13] F. Jessen,et al. Design and first baseline data of the DZNE multicenter observational study on predementia Alzheimer’s disease (DELCODE) , 2018, Alzheimer's Research & Therapy.
[14] R. Sperling,et al. Optimizing the preclinical Alzheimer's cognitive composite with semantic processing: The PACC5 , 2017, Alzheimer's & Dementia.
[15] E. Düzel,et al. A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI , 2017, NeuroImage: Clinical.
[16] Attila Losonczy,et al. Mnemonic Functions for Nonlinear Dendritic Integration in Hippocampal Pyramidal Circuits , 2016, Neuron.
[17] P. Yushkevich,et al. Automated volumetry and regional thickness analysis of hippocampal subfields and medial temporal cortical structures in mild cognitive impairment , 2015, Human brain mapping.
[18] Andrew J. Saykin,et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer's disease , 2014, Alzheimer's & Dementia.
[19] James L. McClelland,et al. Generalization Through the Recurrent Interaction of Episodic Memories , 2012, Psychological review.
[20] Lila Davachi,et al. Object Unitization and Associative Memory Formation Are Supported by Distinct Brain Regions , 2010, The Journal of Neuroscience.
[21] Charles Hall,et al. FREE AND CUED SELECTIVE REMINDING DISTINGUISHES ALZHEIMER'S DISEASE FROM VASCULAR DEMENTIA , 2008, Journal of the American Geriatrics Society.
[22] J. Pruessner,et al. Impaired familiarity with preserved recollection after anterior temporal-lobe resection that spares the hippocampus , 2007, Proceedings of the National Academy of Sciences.
[23] Rachel A. Diana,et al. Imaging recollection and familiarity in the medial temporal lobe: a three-component model , 2007, Trends in Cognitive Sciences.
[24] Hilde van der Togt,et al. Publisher's Note , 2003, J. Netw. Comput. Appl..
[25] E. Tulving. Episodic memory: from mind to brain. , 2002, Annual review of psychology.
[26] M Mishkin,et al. Brain activity evidence for recognition without recollection after early hippocampal damage , 2001, Proceedings of the National Academy of Sciences of the United States of America.
[27] M. Folstein,et al. Mini-mental and son. , 1998, International journal of geriatric psychiatry.
[28] E. Tulving,et al. Event-related brain potential correlates of two states of conscious awareness in memory. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[29] James L. McClelland,et al. Considerations arising from a complementary learning systems perspective on hippocampus and neocortex , 1996, Hippocampus.
[30] D. Wechsler. WAIS-R manual : Wechsler adult intelligence scale-revised , 1981 .