Task space control for on-orbit space robotics using a new ROS-based framework

[1]  Andrew P. Farley,et al.  How to pick a mobile robot simulator: A quantitative comparison of CoppeliaSim, Gazebo, MORSE and Webots with a focus on the accuracy of motion simulations , 2022, Simulation Modelling Practice and Theory.

[2]  Tanmay Haldankar,et al.  Design of Robotic Manipulator for Welding using ROS and Gazebo , 2022, 2022 IEEE Delhi Section Conference (DELCON).

[3]  Wesley Rodrigues de Oliveira,et al.  Comparison of visual servoing technologies for robotized aerospace structural assembly and inspection , 2022, Robotics Comput. Integr. Manuf..

[4]  J. Pomares,et al.  Direct visual servoing and interaction control for a two-arms on-orbit servicing spacecraft , 2021, Acta Astronautica.

[5]  P. Gasbarri,et al.  GNC architecture solutions for robust operations of a free-floating space manipulator via image based visual servoing , 2020 .

[6]  P. Anggraeni,et al.  Design and Development of Multiple Mobile Manipulator Robots using Gazebo-ROS , 2020, 2020 International Conference on Applied Science and Technology (iCAST).

[7]  Nola Taylor Redd,et al.  Bringing satellites back from the dead: Mission extension vehicles give defunct spacecraft a new lease on life - [News] , 2020, IEEE Spectrum.

[8]  Q. Tian,et al.  Dynamics of fluid-filled space multibody systems considering the microgravity effects , 2020 .

[9]  Yang Liu,et al.  Three-line structured light vision system for non-cooperative satellites in proximity operations , 2020 .

[10]  François Chaumette,et al.  RemoveDebris Vision-Based Navigation preliminary results , 2019 .

[11]  Markus Wilde,et al.  Historical survey of kinematic and dynamic spacecraft simulators for laboratory experimentation of on-orbit proximity maneuvers , 2019, Progress in Aerospace Sciences.

[12]  Joseph C. Parrish,et al.  Upgrading In-service Spacecraft with On-orbit Attachable Capabilities , 2018, 2018 AIAA SPACE and Astronautics Forum and Exposition.

[13]  M. Reza Emami,et al.  Concurrent image-based visual servoing with adaptive zooming for non-cooperative rendezvous maneuvers , 2017 .

[14]  M. Reza Emami,et al.  Direct image-based visual servoing of free-floating space manipulators , 2016 .

[15]  Hector Gutierrez,et al.  ORION: A simulation environment for spacecraft formation flight, capture, and orbital robotics , 2016, 2016 IEEE Aerospace Conference.

[16]  Patricio A. Vela,et al.  Cooperative Relative Navigation for Space Rendezvous and Proximity Operations using Controlled Active Vision , 2016, J. Field Robotics.

[17]  Alvar Saenz-Otero,et al.  An Open Research Facility for Vision‐Based Navigation Onboard the International Space Station , 2016, J. Field Robotics.

[18]  Gangqi Dong,et al.  Position-based visual servo control of autonomous robotic manipulators , 2015 .

[19]  Huapu Lu,et al.  Effects of Countdown Signals in Red Phase on Drivers: A Comparative Study between Japan and Turkey , 2014 .

[20]  Zhi Li,et al.  Autonomous rendezvous and docking of an unknown tumbling space target with a monocular camera , 2014, Proceedings of 2014 IEEE Chinese Guidance, Navigation and Control Conference.

[21]  Francisco José Madrid-Cuevas,et al.  Automatic generation and detection of highly reliable fiducial markers under occlusion , 2014, Pattern Recognit..

[22]  Yunhui Liu,et al.  Hand-eye servo and impedance control for manipulator arm to capture target satellite safely , 2014, Robotica.

[23]  Frederick Tasker,et al.  Managing Contact Dynamics for Orbital Robotic Servicing Missions , 2008 .

[24]  Paul Crawford,et al.  SGP4 Orbit Determination , 2008 .

[25]  Gerd Hirzinger,et al.  Impedance Control for a Free-Floating Robot in the Grasping of a Tumbling Target with Parameter Uncertainty , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[26]  Marcello Romano,et al.  Laboratory Experimentation of Autonomous Spacecraft Approach and Docking to a Collaborative Target , 2006 .

[27]  Raya Khanin,et al.  A Lagrangian multibody code for deriving the symbolic state-space equations of motion for open-loop systems containing flexible beams , 2004, Math. Comput. Simul..

[28]  Kazuya Yoshida,et al.  Engineering Test Satellite VII Flight Experiments for Space Robot Dynamics and Control: Theories on Laboratory Test Beds Ten Years Ago, Now in Orbit , 2003, Int. J. Robotics Res..

[29]  Kazuya Yoshida,et al.  Reaction null-space control of flexible structure mounted manipulator systems , 1999, IEEE Trans. Robotics Autom..

[30]  Kazuya Yoshida,et al.  The SpaceDyn: a MATLAB toolbox for space and mobile robots , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[31]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[32]  Florian Rems,et al.  10-Year Anniversary of the European Proximity Operations Simulator 2.0—Looking Back at Test Campaigns, Rendezvous Research and Facility Improvements , 2021, Aerospace.

[33]  Nobu Okada,et al.  The ELSA-d End-of-life Debris Removal Mission: Preparing for Launch , 2019 .

[34]  M. Toso,et al.  DCAP: ASSESSMENT OF A MULTI-PAYLOAD INSERTION PROBLEM BY MEANS OF MULTIBODY DYNAMICS , 2018 .

[35]  日経BP社,et al.  Amazon Web Services完全ソリューションガイド , 2016 .

[36]  Geert Smet,et al.  MULTI-BODY DYNAMICS SOFTWARE TOOL: TWO CASE STUDIES , 2009 .

[37]  Andre Ribeiro de Oliveira,et al.  A space application of a data recovery procedure based on direct enforced motion using a multi-body dynamics software (DCAP) , 2005 .

[38]  Paolo Gasbarri,et al.  Dynamics of multibody systems in space environment; Lagrangian vs. Eulerian approach , 2004 .

[39]  Steven Dubowsky,et al.  On the dynamics of manipulators in space using the virtual manipulator approach , 1987, Proceedings. 1987 IEEE International Conference on Robotics and Automation.