Fuel-Economic Flight Optimization for Descent and Approach Phases

Copyright © 2013 by the authors. Published by the American Institute of Aeronautics and Astronautics, Inc.

[1]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[2]  Hans Josef Pesch,et al.  Abort landing in the presence of windshear as a minimax optimal control problem, part 2: Multiple shooting and homotopy , 1991 .

[3]  R. Longman,et al.  Time-optimal extension and retraction of robots: Numerical analysis of the switching structure , 1995 .

[4]  Henry J. Kelley,et al.  Flight path optimization with multiple time scales , 1971 .

[5]  B. Cao,et al.  Constrained time-efficient and smooth cubic spline trajectory generation for industrial robots , 1997 .

[6]  Damián Rivas,et al.  Minimum-Fuel Cruise at Constant Altitude with Fixed Arrival Time , 2010 .

[7]  Panagiotis Tsiotras,et al.  A quadratic programming approach to path smoothing , 2011, Proceedings of the 2011 American Control Conference.

[8]  Jan Swevers,et al.  Time-Optimal Path Tracking for Robots: A Convex Optimization Approach , 2009, IEEE Transactions on Automatic Control.

[9]  Panagiotis Tsiotras,et al.  Density Functions for Mesh Refinement in Numerical Optimal Control , 2011 .

[10]  Phil G. Howlett,et al.  Local energy minimization in optimal train control , 2009, Autom..

[11]  Eugene Khmelnitsky,et al.  On an optimal control problem of train operation , 2000, IEEE Trans. Autom. Control..

[12]  J. W. Burrows Fuel-optimal aircraft trajectories with fixed arrival times , 1981 .

[13]  A. V. Dmitruk,et al.  Solution problem of the energetically optimal control of the motion of a train by the maximum principle , 1987 .

[14]  E. Feron,et al.  Robust hybrid control for autonomous vehicle motion planning , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[15]  Volker Rehbock,et al.  Numerical solution methods for singular control with multiple state dependent forms , 2007, Optim. Methods Softw..

[16]  Arndt Lüder,et al.  Optimization Approach to , 2015 .

[17]  Krishan Rana,et al.  An Optimization Approach , 2004 .

[18]  Kang G. Shin,et al.  Minimum-time control of robotic manipulators with geometric path constraints , 1985 .

[19]  Efstathios Bakolas,et al.  Initial Guess Generation for Aircraft Landing Trajectory Optimization , 2011 .

[20]  Ping Lu,et al.  Optimal aircraft terrain-following analysis and trajectory generation , 1995 .

[21]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[22]  J. W. Burrows Fuel optimal aircraft trajectories with fixed arrival times , 1981 .

[23]  Kai Virtanen,et al.  Automated Generation of Realistic Near-Optimal Aircraft Trajectories , 2008 .

[24]  Panagiotis Tsiotras,et al.  Time-Optimal Parameterization of Geometric Paths for Fixed-Wing Aircraft , 2010 .

[25]  Jack D. Mattingly,et al.  Aircraft engine design , 1987 .

[26]  Z. Shiller,et al.  Computation of Path Constrained Time Optimal Motions With Dynamic Singularities , 1992 .

[27]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2005, SIAM Rev..

[28]  Panagiotis Tsiotras,et al.  Time-Optimal Path Following for Fixed-Wing Aircraft , 2013 .

[29]  Hans Josef Pesch,et al.  Abort landing in the presence of windshear as a minimax optimal control problem, part 1: Necessary conditions , 1991 .

[30]  P. Tsiotras,et al.  Minimum-Time Travel for a Vehicle with Acceleration Limits: Theoretical Analysis and Receding-Horizon Implementation , 2008 .

[31]  Yiming Zhao,et al.  Efficient and robust aircraft landing trajectory optimization , 2012 .

[32]  Lydia E. Kavraki,et al.  Motion Planning With Dynamics by a Synergistic Combination of Layers of Planning , 2010, IEEE Transactions on Robotics.

[33]  Friedrich Pfeiffer,et al.  A concept for manipulator trajectory planning , 1987, IEEE J. Robotics Autom..

[34]  Yiming Zhao,et al.  Speed profile optimization for optimal path tracking , 2013, 2013 American Control Conference.