Graph-based methods for the automatic annotation and retrieval of art prints

The analysis of images taken from cultural heritage artifacts is an emerging area of research in the field of information retrieval. Current methodologies are focused on the analysis of digital images of paintings for the tasks of forgery detection and style recognition. In this paper, we introduce a graph-based method for the automatic annotation and retrieval of digital images of art prints. Such method can help art historians analyze printed art works using an annotated database of digital images of art prints. The main challenge lies in the fact that art prints generally have limited visual information. The results show that our approach produces better results in a weakly annotated database of art prints in terms of annotation and retrieval performance compared to state-of-the-art approaches based on bag of visual words.

[1]  Siwei Lyu,et al.  A digital technique for art authentication , 2004, Proc. Natl. Acad. Sci. USA.

[2]  Wei-Ying Ma,et al.  Imagerank : spectral techniques for structural analysis of image database , 2003, 2003 International Conference on Multimedia and Expo. ICME '03. Proceedings (Cat. No.03TH8698).

[3]  P. Groenen,et al.  Modern Multidimensional Scaling: Theory and Applications , 1999 .

[4]  Ramesh C. Jain,et al.  Semi-supervised annotation of brushwork in paintings domain using serial combinations of multiple experts , 2006, ACM Multimedia.

[5]  Marcel Worring,et al.  Content-Based Image Retrieval at the End of the Early Years , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[6]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[7]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[8]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[9]  James Ze Wang,et al.  Studying digital imagery of ancient paintings by mixtures of stochastic models , 2004, IEEE Transactions on Image Processing.

[10]  R. Manmatha,et al.  Multiple Bernoulli relevance models for image and video annotation , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..

[11]  Zoubin Ghahramani,et al.  Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.

[12]  Vladimir Pavlovic,et al.  A New Baseline for Image Annotation , 2008, ECCV.

[13]  Rong Jin,et al.  Correlated Label Propagation with Application to Multi-label Learning , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[14]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[15]  Gunnar Rätsch,et al.  Large Scale Multiple Kernel Learning , 2006, J. Mach. Learn. Res..

[16]  Ohad Shamir,et al.  Multiclass-Multilabel Classification with More Classes than Examples , 2010, AISTATS.

[17]  Gabriela Csurka,et al.  Visual categorization with bags of keypoints , 2002, eccv 2004.

[18]  D. Field,et al.  Mapping the similarity space of paintings: Image statistics and visual perception , 2010 .

[19]  Gustavo Carneiro,et al.  Supervised Learning of Semantic Classes for Image Annotation and Retrieval , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[21]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Shumeet Baluja,et al.  VisualRank: Applying PageRank to Large-Scale Image Search , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Allan Borodin,et al.  Link analysis ranking: algorithms, theory, and experiments , 2005, TOIT.

[24]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[25]  Shannon M. Hughes,et al.  Detection of forgery in paintings using supervised learning , 2009, 2009 16th IEEE International Conference on Image Processing (ICIP).

[26]  Ben Taskar,et al.  Learning structured prediction models: a large margin approach , 2005, ICML.

[27]  Stefanie Nowak,et al.  Performance measures for multilabel evaluation: a case study in the area of image classification , 2010, MIR '10.

[28]  John Langford,et al.  Multi-Label Prediction via Compressed Sensing , 2009, NIPS.

[29]  Jia Li,et al.  Image processing for artist identification , 2008, IEEE Signal Processing Magazine.

[30]  Gustavo Carneiro,et al.  The automatic annotation and retrieval of digital images of prints and tile panels using network link analysis algorithms , 2011, Electronic Imaging.

[31]  Frédéric Jurie,et al.  Sampling Strategies for Bag-of-Features Image Classification , 2006, ECCV.

[32]  Eric O. Postma,et al.  Computerized visual analysis of paintings , 2005 .

[33]  Cordelia Schmid,et al.  Image annotation with tagprop on the MIRFLICKR set , 2010, MIR '10.

[34]  Jing Liu,et al.  Image annotation via graph learning , 2009, Pattern Recognit..

[35]  Jianping Fan,et al.  Structured max-margin learning for multi-label image annotation , 2010, CIVR '10.

[36]  Henri Maître,et al.  15 years of image processing and the fine arts , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[37]  Daniel J. Graham,et al.  Stylometrics of artwork: uses and limitations , 2010, Electronic Imaging.

[38]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[39]  Shannon M. Hughes,et al.  Stylistic analysis of paintings usingwavelets and machine learning , 2009, 2009 17th European Signal Processing Conference.

[40]  Koen E. A. van de Sande,et al.  The University of Amsterdam's Concept Detection System at ImageCLEF 2009 , 2009, CLEF.

[41]  Stephen M. Griffin Recovering the past through computation: new techniques for cultural heritage , 2010, MIR '10.

[42]  David J. Fleet,et al.  Stochastic Image Denoising , 2009, BMVC.

[43]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[44]  Michael I. Jordan,et al.  Link Analysis, Eigenvectors and Stability , 2001, IJCAI.

[45]  Tommi S. Jaakkola,et al.  Partially labeled classification with Markov random walks , 2001, NIPS.