Quantifying the Efficiency of Ride Sharing

In unit-capacity mobility-on-demand systems, the vehicles transport only one travel party at a time, whereas in ride-sharing mobility-on-demand systems, a vehicle may transport different travel parties at the same time, e.g., if paths are partially overlapping. One potential benefit of ride sharing is increased system efficiency. However, it is not clear what the trade-offs are between the efficiency gains and the reduction in quality of service. To quantify those trade-offs, an open-source simulation environment is introduced, which is capable of evaluating a large class of operational policies for ride-sharing mobility-on-demand systems. The impact of ride sharing on efficiency and service level is assessed for several benchmark operational policies from the literature and for different transportation scenarios: first a dense urban scenario, then a line-shaped, rural one. Based on the results of these case studies, we find that the efficiency gains in ride sharing are relatively small and potentially hard to justify against quality of service concerns such as reduced convenience, loss of privacy, and higher total travel and drive times. Furthermore, in the assessed scenarios, the relatively low occupancy of the vehicles suggests that smaller vehicles with 4-6 seats, able to handle occasional ride sharing, may be preferable to larger and more expensive vehicles such as minibuses.