The 3-SAT problem with large number of clauses in the ∞-replica symmetry breaking scheme

In this paper we analyse the structure of the UNSAT-phase of the over-constrained 3-SAT model by studying the low temperature phase of the associated disordered spin model. We derived the full replica symmetry breaking (RSB) equations for a general class of disordered spin models which includes the Sherrington?Kirkpatrick (SK) model, the Ising p-spin model as well as the over-constrained 3-SAT model as particular cases. We have numerically solved the ?-RSB equations using a pseudo-spectral code down to and including zero temperature. We find that the UNSAT-phase of the over-constrained 3-SAT is of the ?-RSB kind: in order to get a stable solution the replica symmetry has to be broken in a continuous way, similarly to the SK model in an external magnetic field.

[1]  Riccardo Zecchina,et al.  Exact solutions for diluted spin glasses and optimization problems , 2001, Physical review letters.

[2]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[3]  A. Pallavicini,et al.  Higher-order QED corrections to single-W production in electron–positron collisions , 2000, hep-ph/0005121.

[4]  G. Parisi,et al.  The K-SAT Problem in a Simple Limit , 2000, cond-mat/0007364.

[5]  Rémi Monasson,et al.  THE EUROPEAN PHYSICAL JOURNAL B c○ EDP Sciences , 1999 .

[6]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[7]  Monasson,et al.  Entropy of the K-satisfiability problem. , 1996, Physical review letters.

[8]  Bart Selman,et al.  Critical Behavior in the Computational Cost of Satisfiability Testing , 1996, Artif. Intell..

[9]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[10]  A numerical study of the pure states of the Sherrington-Kirkpatrick spin glass model-a comparison with Parisi's replica-symmetry-breaking solution , 1987 .

[11]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[12]  E. Gardner Spin glasses with p-spin interactions , 1985 .

[13]  M. Mézard,et al.  The simplest spin glass , 1984 .

[14]  H. Sommers,et al.  Distribution of frozen fields in the mean-field theory of spin glasses , 1984 .

[15]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[16]  M. Gabay,et al.  A Parisi equation for Sompolinsky's solution of the SK model , 1982 .

[17]  H. Orland,et al.  Replica derivation of Sompolinsky free energy functional for mean field spin glasses , 1981 .

[18]  Haim Sompolinsky,et al.  Time-Dependent Order Parameters in Spin-Glasses , 1981 .

[19]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[20]  B. Derrida Random-Energy Model: Limit of a Family of Disordered Models , 1980 .

[21]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  R. Palmer,et al.  Solution of 'Solvable model of a spin glass' , 1977 .

[24]  S. Edwards,et al.  Theory of spin glasses , 1975 .

[25]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[26]  G. S. Patterson,et al.  Spectral Calculations of Isotropic Turbulence: Efficient Removal of Aliasing Interactions , 1971 .

[27]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[28]  A. H. Taub,et al.  Studies In Applied Mathematics , 1971 .