The formulation of homogenization method applied to large deformation problem for composite materials

In order to analyze the mechanical behaviors of composite materials under large deformation, the formulation of the homogenization method is described. In this formulation, assuming that the microstructures in a local region of the global structure are deformed uniformly and that consequently the microscopic periodicity remains in the local region under large deformation, the microscopic deformation is precisely defined by the perturbed displacement and product of macroscopic displacement gradient and microscopic coordinates. Finally, microscopic and macroscopic equations are obtained. The above mentioned assumption of the periodicity of microstructures is experimentally validated. The computer program is also developed according to this formulation, and the large deformation is analyzed for the unidirectional fiber reinforced composite material and the knitted fabric composite material.

[1]  Gilles A. Francfort,et al.  Homogenization and Linear Thermoelasticity , 1983 .

[2]  M. Zako,et al.  Three-dimensional microstructural design of woven fabric composite material by homogenization method , 1995 .

[3]  G. Duvaut,et al.  A New Method of Analysis of Composite Structures. , 1983 .

[4]  E. Wintermantel,et al.  KNITTED CARBON FIBER REINFORCED THERMOPLASTICS , 1999 .

[5]  Dominique Leguillon,et al.  Homogenized constitutive law for a partially cohesive composite material , 1982 .

[6]  寺田 賢二郎,et al.  均質化法を用いた複合材料の弾塑性解析 : 第1報,定式化 , 1995 .

[7]  Somnath Ghosh,et al.  Two scale analysis of heterogeneous elastic-plastic materials with asymptotic homogenization and Voronoi cell finite element model , 1996 .

[8]  Naoki Takano,et al.  Macro-micro uncoupled homogenization procedure for microscopic nonlinear behavior analysis of composites , 1996 .

[9]  S. Jansson,et al.  Homogenized nonlinear constitutive properties and local stress concentrations for composites with periodic internal structure , 1992 .

[10]  Noboru Kikuchi,et al.  Characterization of the mechanical behaviors of solid-fluid mixture by the homogenization method , 1998 .

[11]  E. Sanchez-Palencia Non-Homogeneous Media and Vibration Theory , 1980 .

[12]  M. Kotaki,et al.  Mechanical Properties of Warp-Knitted, Fabric-Reinforced Composites , 1993 .

[13]  H. Okada,et al.  大変形弾塑性材料の均質化法による解析 : 第1報, 周期性の仮定を厳密に満足するための定式化 , 1998 .

[14]  D. Cioranescu,et al.  Homogenization in open sets with holes , 1979 .

[15]  N. Ohno,et al.  A Homogenization Theory for Rate-Dependent Deformation of Composites with Periodic Internal Structures , 1997 .

[16]  N. Aravas,et al.  Steady-state creep of fiber-reinforced composites: constitutive equations and computational issues , 1995 .

[17]  N. Kikuchi,et al.  Preprocessing and postprocessing for materials based on the homogenization method with adaptive fini , 1990 .

[18]  Jacques-Louis Lions,et al.  Some Methods in the Mathematical Analysis of Systems and Their Control , 1981 .

[19]  S. Shkoller,et al.  A model for defective fibrous composites , 1996 .

[20]  S. Ramakrishna Analysis and Modeling of Plain Knitted Fabric Reinforced Composites , 1997 .

[21]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[22]  N. Kikuchi,et al.  Homogenization analysis method for composites considering geometrical nonlinearity and fracture of microstructure , 1996 .

[23]  Ivo Babuška,et al.  Homogenization Approach In Engineering , 1976 .

[24]  M. Zako,et al.  Computational analysis of deep-drawing for composite materials considering the microstructure -proposition of analytical method , 1998 .

[25]  Mechanical properties of warp knitted fabric reinforced composites , 1995 .