An atlas of dynamic chromatin landscapes in mouse fetal development

[1]  Ian T. Fiddes,et al.  Transcriptional activity and strain-specific history of mouse pseudogenes , 2020, Nature Communications.

[2]  D. Dickel,et al.  Spatiotemporal DNA methylome dynamics of the developing mouse fetus , 2020, Nature.

[3]  Michael J. Purcaro,et al.  Expanded encyclopaedias of DNA elements in the human and mouse genomes , 2020, Nature.

[4]  Yu Zhang,et al.  The changing mouse embryo transcriptome at whole tissue and single-cell resolution , 2020, Nature.

[5]  Weiqi Wang,et al.  Taiji: System-level identification of key transcription factors reveals transcriptional waves in mouse embryonic development , 2019, Science Advances.

[6]  Wei Wang,et al.  Epigenomic analysis reveals DNA motifs regulating histone modifications in human and mouse , 2019, Proceedings of the National Academy of Sciences.

[7]  Mark Gerstein,et al.  A cross-organism framework for supervised enhancer prediction with epigenetic pattern recognition and targeted validation , 2018, bioRxiv.

[8]  William S. DeWitt,et al.  A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility , 2018, Cell.

[9]  T. Cai,et al.  Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate , 2018, Proceedings of the National Academy of Sciences.

[10]  D. Dickel,et al.  Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation , 2018, Nature Neuroscience.

[11]  Reporting for specific materials, systems and methods , 2018 .

[12]  A. Pombo,et al.  RNA polymerase II primes Polycomb‐repressed developmental genes throughout terminal neuronal differentiation , 2017, Molecular systems biology.

[13]  Kevin Y. Yip,et al.  Reconstruction of enhancer–target networks in 935 samples of human primary cells, tissues and cell lines , 2017, Nature Genetics.

[14]  D. Dickel,et al.  Spatiotemporal DNA Methylome Dynamics of the Developing Mammalian Fetus , 2017, bioRxiv.

[15]  Doron Lancet,et al.  GeneHancer: genome-wide integration of enhancers and target genes in GeneCards , 2017, Database J. Biol. Databases Curation.

[16]  D. Dickel,et al.  Improved regulatory element prediction based on tissue-specific local epigenomic signatures , 2017, Proceedings of the National Academy of Sciences.

[17]  Martin Vingron,et al.  Characterization of hundreds of regulatory landscapes in developing limbs reveals two regimes of chromatin folding , 2017, Genome research.

[18]  S. Mundlos,et al.  Formation of new chromatin domains determines pathogenicity of genomic duplications , 2016, Nature.

[19]  Bing Ren,et al.  Broad histone H3K4me3 domains in mouse oocytes modulate maternal-to-zygotic transition , 2016, Nature.

[20]  Y. Zhang,et al.  Allelic reprogramming of the histone modification H3K4me3 in early mammalian development , 2016, Nature.

[21]  Hans Clevers,et al.  Analysis of neural crest–derived clones reveals novel aspects of facial development , 2016, Science Advances.

[22]  C. Allis,et al.  The molecular hallmarks of epigenetic control , 2016, Nature Reviews Genetics.

[23]  Wei Xie,et al.  The landscape of accessible chromatin in mammalian preimplantation embryos , 2016, Nature.

[24]  Jesse R. Dixon,et al.  Chromatin Domains: The Unit of Chromosome Organization. , 2016, Molecular cell.

[25]  David A. Knowles,et al.  RNA splicing is a primary link between genetic variation and disease , 2016, Science.

[26]  B. Hall,et al.  A shared role for sonic hedgehog signalling in patterning chondrichthyan gill arch appendages and tetrapod limbs , 2016, Development.

[27]  J. Michael Cherry,et al.  ENCODE data at the ENCODE portal , 2015, Nucleic Acids Res..

[28]  L. Di Croce,et al.  Regulation of gene transcription by Polycomb proteins , 2015, Science Advances.

[29]  Alireza F. Siahpirani,et al.  A predictive modeling approach for cell line-specific long-range regulatory interactions , 2015, Nucleic acids research.

[30]  Gabor T. Marth,et al.  A global reference for human genetic variation , 2015, Nature.

[31]  R. Shivdasani,et al.  Control of stomach smooth muscle development and intestinal rotation by transcription factor BARX1. , 2015, Developmental biology.

[32]  Matthew C. Canver,et al.  BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis , 2015, Nature.

[33]  A. Visel,et al.  Disruptions of Topological Chromatin Domains Cause Pathogenic Rewiring of Gene-Enhancer Interactions , 2015, Cell.

[34]  Jun S. Liu,et al.  The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans , 2015, Science.

[35]  Pietro Liò,et al.  The BioMart community portal: an innovative alternative to large, centralized data repositories , 2015, Nucleic Acids Res..

[36]  Cameron S. Osborne,et al.  The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements , 2015, Genome research.

[37]  Joel Hirschhorn,et al.  SNPsnap: a Web-based tool for identification and annotation of matched SNPs , 2015, Bioinform..

[38]  Michael Q. Zhang,et al.  Integrative analysis of 111 reference human epigenomes , 2015, Nature.

[39]  Matthew E. Ritchie,et al.  limma powers differential expression analyses for RNA-sequencing and microarray studies , 2015, Nucleic acids research.

[40]  J. Déjardin,et al.  Constitutive heterochromatin formation and transcription in mammals , 2015, Epigenetics & Chromatin.

[41]  Shane J. Neph,et al.  A comparative encyclopedia of DNA elements in the mouse genome , 2014, Nature.

[42]  Tony Kouzarides,et al.  Histone core modifications regulating nucleosome structure and dynamics , 2014, Nature Reviews Molecular Cell Biology.

[43]  Koji Shimozaki Sox2 transcription network acts as a molecular switch to regulate properties of neural stem cells. , 2014, World journal of stem cells.

[44]  J. Martens,et al.  Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. , 2014, Molecular cell.

[45]  N. Neretti,et al.  Transcriptional landscape of repetitive elements in normal and cancer human cells , 2014, BMC Genomics.

[46]  Fidel Ramírez,et al.  deepTools: a flexible platform for exploring deep-sequencing data , 2014, Nucleic Acids Res..

[47]  A. Stark,et al.  Transcriptional enhancers: from properties to genome-wide predictions , 2014, Nature Reviews Genetics.

[48]  A. Visel,et al.  Rapid and Pervasive Changes in Genome-wide Enhancer Usage during Mammalian Development , 2013, Cell.

[49]  B. Wold,et al.  Large-Scale Quality Analysis of Published ChIP-seq Data , 2013, G3: Genes, Genomes, Genetics.

[50]  R. Young,et al.  Super-Enhancers in the Control of Cell Identity and Disease , 2013, Cell.

[51]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[52]  Danny Reinberg,et al.  A double take on bivalent promoters. , 2013, Genes & development.

[53]  Laura E. DeMare,et al.  The genomic landscape of cohesin-associated chromatin interactions , 2013, Genome research.

[54]  Ellen T. Gelfand,et al.  The Genotype-Tissue Expression (GTEx) project , 2013, Nature Genetics.

[55]  David A. Orlando,et al.  Master Transcription Factors and Mediator Establish Super-Enhancers at Key Cell Identity Genes , 2013, Cell.

[56]  David A. Orlando,et al.  Selective Inhibition of Tumor Oncogenes by Disruption of Super-Enhancers , 2013, Cell.

[57]  Bradley E. Bernstein,et al.  Genome-wide Chromatin State Transitions Associated with Developmental and Environmental Cues , 2013, Cell.

[58]  Edgar Wingender,et al.  TFClass: an expandable hierarchical classification of human transcription factors , 2012, Nucleic Acids Res..

[59]  Shane J. Neph,et al.  Systematic Localization of Common Disease-Associated Variation in Regulatory DNA , 2012, Science.

[60]  S. Loughna,et al.  Heavy and light roles: myosin in the morphogenesis of the heart , 2012, Cellular and Molecular Life Sciences.

[61]  Nathan C. Sheffield,et al.  The accessible chromatin landscape of the human genome , 2012, Nature.

[62]  K. Kaestner,et al.  Transcriptional networks in liver and intestinal development. , 2012, Cold Spring Harbor perspectives in biology.

[63]  Marc D. Perry,et al.  ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia , 2012, Genome research.

[64]  Bronwen L. Aken,et al.  GENCODE: The reference human genome annotation for The ENCODE Project , 2012, Genome research.

[65]  Lee E. Edsall,et al.  A map of the cis-regulatory sequences in the mouse genome , 2012, Nature.

[66]  Laura E. DeMare,et al.  Chromatin state signatures associated with tissue-specific gene expression and enhancer activity in the embryonic limb , 2012, Genome research.

[67]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[68]  S. Q. Xie,et al.  Polycomb Associates Genome-wide with a Specific RNA Polymerase II Variant, and Regulates Metabolic Genes in ESCs , 2012, Cell stem cell.

[69]  Manolis Kellis,et al.  ChromHMM: automating chromatin-state discovery and characterization , 2012, Nature Methods.

[70]  B. Black,et al.  Transcription factor pathways and congenital heart disease. , 2012, Current topics in developmental biology.

[71]  M. Marra,et al.  Characterization of the Contradictory Chromatin Signatures at the 3′ Exons of Zinc Finger Genes , 2011, PloS one.

[72]  Timothy J. Durham,et al.  Systematic analysis of chromatin state dynamics in nine human cell types , 2011, Nature.

[73]  S. Wells,et al.  The novel mouse mutant, chuzhoi, has disruption of Ptk7 protein and exhibits defects in neural tube, heart and lung development and abnormal planar cell polarity in the ear , 2010, BMC Developmental Biology.

[74]  Lovelace J Luquette,et al.  Estimating enrichment of repetitive elements from high-throughput sequence data , 2010, Genome Biology.

[75]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[76]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[77]  Martine Uittenbogaard,et al.  NeuroD6 genomic signature bridging neuronal differentiation to survival via the molecular chaperone network , 2010, Journal of neuroscience research.

[78]  A. Visel,et al.  Genomic Views of Distant-Acting Enhancers , 2009, Nature.

[79]  F. Collins,et al.  Potential etiologic and functional implications of genome-wide association loci for human diseases and traits , 2009, Proceedings of the National Academy of Sciences.

[80]  Mikael Bodén,et al.  MEME Suite: tools for motif discovery and searching , 2009, Nucleic Acids Res..

[81]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[82]  Simon Kasif,et al.  Genomewide Analysis of PRC1 and PRC2 Occupancy Identifies Two Classes of Bivalent Domains , 2008, PLoS genetics.

[83]  Mi-Sung Kim,et al.  MEF2C, a transcription factor that facilitates learning and memory by negative regulation of synapse numbers and function , 2008, Proceedings of the National Academy of Sciences.

[84]  Sarah A. Teichmann,et al.  DBD––taxonomically broad transcription factor predictions: new content and functionality , 2007, Nucleic Acids Res..

[85]  Manuel A. R. Ferreira,et al.  PLINK: a tool set for whole-genome association and population-based linkage analyses. , 2007, American journal of human genetics.

[86]  T. Mikkelsen,et al.  Genome-wide maps of chromatin state in pluripotent and lineage-committed cells , 2007, Nature.

[87]  Dustin E. Schones,et al.  High-Resolution Profiling of Histone Methylations in the Human Genome , 2007, Cell.

[88]  Inna Dubchak,et al.  VISTA Enhancer Browser—a database of tissue-specific human enhancers , 2006, Nucleic Acids Res..

[89]  Alan M. Moses,et al.  In vivo enhancer analysis of human conserved non-coding sequences , 2006, Nature.

[90]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[91]  M. Lynch,et al.  The Origins of Genome Complexity , 2003, Science.

[92]  En Li,et al.  Suv 39 h-Mediated Histone H 3 Lysine 9 Methylation Directs DNA Methylation to Major Satellite Repeats at Pericentric Heterochromatin , 2003 .

[93]  R. Lovell-Badge,et al.  Multipotent cell lineages in early mouse development depend on SOX2 function. , 2003, Genes & development.

[94]  Naoto Endo,et al.  Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[95]  L. Lim,et al.  Transcription factors in mouse lung development and function. , 2001, American journal of physiology. Lung cellular and molecular physiology.

[96]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[97]  G. Dressler Transcription factors in renal development: the WT1 and Pax-2 story. , 1995, Seminars in nephrology.

[98]  J. Rossant,et al.  Inducible expression of an hsp68-lacZ hybrid gene in transgenic mice. , 1989, Development.