Experimental Results for Gradient Estimation and Optimization of a Markov Chain in Steady-State

[1]  Harold J. Kushner,et al.  wchastic. approximation methods for constrained and unconstrained systems , 1978 .

[2]  Rajan Suri,et al.  Single Run Optimization of Discrete Event Simulations—An Empirical Study Using the M/M/l Queue , 1989 .

[3]  Xi-Ren Cao,et al.  Convergence properties of infinitesimal perturbation analysis , 1988 .

[4]  P. Glynn,et al.  Stochastic Optimization by Simulation: Convergence Proofs and Experimental Results for the GI/G/1 Queue in Steady-State , 1991 .

[5]  Reuven Y. Rubinstein,et al.  Monte Carlo Optimization, Simulation and Sensitivity of Queueing Networks , 1986 .

[6]  Yu-Chi Ho,et al.  Performance evaluation and perturbation analysis of discrete event dynamic systems , 1987 .

[7]  Rajan Suri,et al.  Infinitesimal perturbation analysis for general discrete event systems , 1987, JACM.

[8]  R Y Rubinstein,et al.  The score function approach for sensitivity analysis of computer simulation models , 1986 .

[9]  Georg Ch. Pflug On-Line Optimization of Simulated Markovian Processes , 1990, Math. Oper. Res..

[10]  Peter W. Glynn,et al.  Likelilood ratio gradient estimation: an overview , 1987, WSC '87.

[11]  Marc S. Meketon,et al.  Optimization in simulation: a survey of recent results , 1987, WSC '87.

[12]  R. Suri,et al.  Perturbation analysis: the state of the art and research issues explained via the GI/G/1 queue , 1989, Proc. IEEE.

[13]  P. Glynn Optimization of stochastic systems via simulation , 1989, WSC '89.

[14]  P. L’Ecuyer,et al.  A Unified View of the IPA, SF, and LR Gradient Estimation Techniques , 1990 .

[15]  Peter W. Glynn,et al.  Likelihood ratio gradient estimation for stochastic systems , 1990, CACM.

[16]  Paul Bratley,et al.  A guide to simulation , 1983 .

[17]  Reuven Y. Rubinstein,et al.  Sensitivity Analysis and Performance Extrapolation for Computer Simulation Models , 1989, Oper. Res..

[18]  A. W. Kemp,et al.  Applied Probability and Queues , 1989 .

[19]  Alan Weiss,et al.  Sensitivity Analysis for Simulations via Likelihood Ratios , 1989, Oper. Res..

[20]  H. Kushner,et al.  An Invariant Measure Approach to the Convergence of Stochastic Approximations with State Dependent Noise. , 1984 .