Local learning with highly analog memory devices

In the next era of distributed computing, brain-based computers that perform operations locally rather than in remote servers would be a major benefit in reducing global energy costs. A new generation of emerging nonvolatile memory devices is a leading candidate for achieving this neuromorphic vision. Using theoretical and experimental work, we have explored critical issues that arise when physically realizing modern artificial neural network (ANN) architectures using emerging memory devices (“memristors”). In our experimental work, we showed organic nanosynapses adapting automatically as logic gates via a companion digital neuron and programmable logic cell (FGPA). In our theoretical work, we also considered multilayer memristive ANNs. We have developed and simulated random projection (NoProp) and backpropagation (Multilayer Perceptron) variants that use two crossbars. These local learning systems showed critical dependencies on the physical constraints of nanodevices. Finally, we examined how feed-forward ANN designs can be modified to exploit temporal effects. We focused in particular on improving bio-inspiration and performance of the NoProp system, for example, we improved the performance with plasticity effects in the first layer. These effects were obtained using a silver ionic nanodevice with intrinsic plasticity transition behavior.

[1]  Alessandro Calderoni,et al.  Neuromorphic Learning and Recognition With One-Transistor-One-Resistor Synapses and Bistable Metal Oxide RRAM , 2016, IEEE Transactions on Electron Devices.

[2]  Risto Miikkulainen,et al.  Evolving Neural Networks through Augmenting Topologies , 2002, Evolutionary Computation.

[3]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[4]  Rainer Waser,et al.  Complementary resistive switches for passive nanocrossbar memories. , 2010, Nature materials.

[5]  S. Grossberg Contour Enhancement , Short Term Memory , and Constancies in Reverberating Neural Networks , 1973 .

[6]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[7]  Chi-Man Vong,et al.  Local Receptive Fields Based Extreme Learning Machine , 2015, IEEE Computational Intelligence Magazine.

[8]  M. Margulis,et al.  Temporal integration can readily switch between sublinear and supralinear summation. , 1998, Journal of neurophysiology.

[9]  Robin Degraeve,et al.  First-principles thermodynamics and defect kinetics guidelines for engineering a tailored RRAM device , 2016 .

[10]  X. Miao,et al.  Ultrafast Synaptic Events in a Chalcogenide Memristor , 2013, Scientific Reports.

[11]  Kevan A. C. Martin,et al.  A Canonical Microcircuit for Neocortex , 1989, Neural Computation.

[12]  Themis Prodromakis,et al.  Analog Memristive Synapse in Spiking Networks Implementing Unsupervised Learning , 2016, Front. Neurosci..

[13]  Anirban Bandyopadhyay,et al.  Large conductance switching and memory effects in organic molecules for data-storage applications , 2003 .

[14]  Sumio Hosaka,et al.  Associative memory realized by a reconfigurable memristive Hopfield neural network , 2015, Nature Communications.

[15]  Rajkumar Buyya,et al.  Next generation cloud computing: New trends and research directions , 2017, Future Gener. Comput. Syst..

[16]  Bernard Widrow,et al.  Adaptive switching circuits , 1988 .

[17]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[18]  Farnood Merrikh-Bayat,et al.  Training and operation of an integrated neuromorphic network based on metal-oxide memristors , 2014, Nature.

[19]  Ligang Gao,et al.  Analog-input analog-weight dot-product operation with Ag/a-Si/Pt memristive devices , 2012, 2012 IEEE/IFIP 20th International Conference on VLSI and System-on-Chip (VLSI-SoC).

[20]  Zhaohao Wang,et al.  Ultrahigh Density Memristor Neural Crossbar for On-Chip Supervised Learning , 2015, IEEE Transactions on Nanotechnology.

[21]  Wolfgang Maass,et al.  Neural Computation with Winner-Take-All as the Only Nonlinear Operation , 1999, NIPS.

[22]  Geoffrey E. Hinton,et al.  Reducing the Dimensionality of Data with Neural Networks , 2006, Science.

[23]  Shashi Shekhar,et al.  Computing and Climate , 2015, Comput. Sci. Eng..

[24]  Wei D. Lu,et al.  Sparse coding with memristor networks. , 2017, Nature nanotechnology.

[25]  V. Derycke,et al.  Electro-grafted organic memristors: Properties and prospects for artificial neural networks based on STDP , 2014, 14th IEEE International Conference on Nanotechnology.

[26]  Mohammed E. Fouda,et al.  On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor , 2015 .

[27]  Yu Wang,et al.  Binary convolutional neural network on RRAM , 2017, 2017 22nd Asia and South Pacific Design Automation Conference (ASP-DAC).

[28]  A. Carlo,et al.  Substrates for flexible electronics: A practical investigation on the electrical, film flexibility, optical, temperature, and solvent resistance properties , 2011 .

[29]  Wei Yang Lu,et al.  Nanoscale memristor device as synapse in neuromorphic systems. , 2010, Nano letters.

[30]  Cees Dekker,et al.  Logic circuits with carbon nanotubes , 2002 .

[31]  Panayiota Poirazi,et al.  Predictive Features of Persistent Activity Emergence in Regular Spiking and Intrinsic Bursting Model Neurons , 2012, PLoS Comput. Biol..

[32]  Benjamin Schrauwen,et al.  Memristor Models for Machine Learning , 2014, Neural Computation.

[33]  Avinoam Kolodny,et al.  Memristor-Based Multilayer Neural Networks With Online Gradient Descent Training , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[34]  John W. Backus,et al.  Can programming be liberated from the von Neumann style?: a functional style and its algebra of programs , 1978, CACM.

[35]  L. Chua Memristor-The missing circuit element , 1971 .

[36]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[37]  Byung Joon Choi,et al.  Engineering nonlinearity into memristors for passive crossbar applications , 2012 .

[38]  Kyriaki Manoli,et al.  Organic field-effect transistor sensors: a tutorial review. , 2013, Chemical Society reviews.

[39]  Mark D. McDonnell,et al.  Fast, Simple and Accurate Handwritten Digit Classification by Training Shallow Neural Network Classifiers with the ‘Extreme Learning Machine’ Algorithm , 2015, PloS one.

[40]  S. Jo,et al.  3D-stackable crossbar resistive memory based on Field Assisted Superlinear Threshold (FAST) selector , 2014, 2014 IEEE International Electron Devices Meeting.

[41]  B. Schrauwen,et al.  Isolated word recognition with the Liquid State Machine: a case study , 2005, Inf. Process. Lett..

[42]  D. Querlioz,et al.  Immunity to Device Variations in a Spiking Neural Network With Memristive Nanodevices , 2013, IEEE Transactions on Nanotechnology.

[43]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[44]  Shimeng Yu,et al.  Mitigating effects of non-ideal synaptic device characteristics for on-chip learning , 2015, 2015 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[45]  Jennifer Hasler,et al.  Finding a roadmap to achieve large neuromorphic hardware systems , 2013, Front. Neurosci..

[46]  E. Vianello,et al.  Bio-Inspired Stochastic Computing Using Binary CBRAM Synapses , 2013, IEEE Transactions on Electron Devices.

[47]  E Tulving,et al.  Priming and human memory systems. , 1990, Science.

[48]  Wei D. Lu,et al.  Data Clustering using Memristor Networks , 2015, Scientific Reports.

[49]  Jacques-Olivier Klein,et al.  Robust neural logic block (NLB) based on memristor crossbar array , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[50]  A. V. Emelyanov,et al.  Hardware elementary perceptron based on polyaniline memristive devices , 2015 .

[51]  Benjamin Schrauwen,et al.  Optoelectronic Reservoir Computing , 2011, Scientific Reports.

[52]  Torsten Lehmann,et al.  An analog CMOS chip set for neural networks with arbitrary topologies , 1993, IEEE Trans. Neural Networks.

[53]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[54]  Sebastian Ruder,et al.  An overview of gradient descent optimization algorithms , 2016, Vestnik komp'iuternykh i informatsionnykh tekhnologii.

[55]  Chao Du,et al.  Emulation of synaptic metaplasticity in memristors. , 2017, Nanoscale.

[56]  Giacomo Indiveri,et al.  Real-Time Classification of Complex Patterns Using Spike-Based Learning in Neuromorphic VLSI , 2009, IEEE Transactions on Biomedical Circuits and Systems.

[57]  Gert Cauwenberghs,et al.  Neuromorphic Silicon Neuron Circuits , 2011, Front. Neurosci.

[58]  Damien Querlioz,et al.  Spintronic Nanodevices for Bioinspired Computing , 2016, Proceedings of the IEEE.

[59]  Peter Ford Dominey,et al.  Real-Time Parallel Processing of Grammatical Structure in the Fronto-Striatal System: A Recurrent Network Simulation Study Using Reservoir Computing , 2013, PloS one.

[60]  Andreas Mayr,et al.  CrossNets: High‐Performance Neuromorphic Architectures for CMOL Circuits , 2003, Annals of the New York Academy of Sciences.

[61]  W. Abraham Metaplasticity: tuning synapses and networks for plasticity , 2008, Nature Reviews Neuroscience.

[62]  David Kappel,et al.  Network Plasticity as Bayesian Inference , 2015, PLoS Comput. Biol..

[63]  Kaushik Roy,et al.  Ultra low power associative computing with spin neurons and resistive crossbar memory , 2013, 2013 50th ACM/EDAC/IEEE Design Automation Conference (DAC).

[64]  V. Ramachandran Anosognosia in Parietal Lobe Syndrome , 1995, Consciousness and Cognition.

[65]  Wei Lu,et al.  Short-term Memory to Long-term Memory Transition in a Nanoscale Memristor , 2022 .

[66]  J. Houghton,et al.  Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2014 .

[67]  E. Oja,et al.  Fast adaptive formation of orthogonalizing filters and associative memory in recurrent networks of neuron-like elements , 1976, Biological Cybernetics.

[68]  Xue-Bing Yin,et al.  Synaptic Metaplasticity Realized in Oxide Memristive Devices , 2016, Advanced materials.

[69]  Hermann Ney,et al.  Cross-entropy vs. squared error training: a theoretical and experimental comparison , 2013, INTERSPEECH.

[70]  Guang-Bin Huang,et al.  Extreme learning machine: a new learning scheme of feedforward neural networks , 2004, 2004 IEEE International Joint Conference on Neural Networks (IEEE Cat. No.04CH37541).

[71]  H. Hwang,et al.  Three‐Dimensional Integration of Organic Resistive Memory Devices , 2010, Advanced materials.

[72]  Matthew Cook,et al.  Unsupervised learning of digit recognition using spike-timing-dependent plasticity , 2015, Front. Comput. Neurosci..

[73]  Fabien Alibart,et al.  OXRAM based ELM architecture for multi-class classification applications , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[74]  Andrew S. Cassidy,et al.  Cognitive computing systems: Algorithms and applications for networks of neurosynaptic cores , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).

[75]  T. Serrano-Gotarredona,et al.  STDP and STDP variations with memristors for spiking neuromorphic learning systems , 2013, Front. Neurosci..

[76]  Fabien Alibart,et al.  Pattern classification by memristive crossbar circuits using ex situ and in situ training , 2013, Nature Communications.

[77]  Eero P. Simoncelli,et al.  Spatiotemporal Elements of Macaque V1 Receptive Fields , 2005, Neuron.

[78]  H. Markram,et al.  Potential for multiple mechanisms, phenomena and algorithms for synaptic plasticity at single synapses , 1998, Neuropharmacology.

[79]  Naftali Tishby,et al.  Deep learning and the information bottleneck principle , 2015, 2015 IEEE Information Theory Workshop (ITW).

[80]  Irem Boybat,et al.  Non-volatile memory as hardware synapse in neuromorphic computing: A first look at reliability issues , 2015, 2015 IEEE International Reliability Physics Symposium.

[81]  O. Cueto,et al.  Physical aspects of low power synapses based on phase change memory devices , 2012 .

[82]  Vishwa Goudar,et al.  Encoding Sensory and Motor Patterns as Time-Invariant Trajectories in Recurrent Neural Networks , 2017 .

[83]  Dennis L Barbour,et al.  Rate, not selectivity, determines neuronal population coding accuracy in auditory cortex , 2017, PLoS biology.

[84]  Surya Ganguli,et al.  Exact solutions to the nonlinear dynamics of learning in deep linear neural networks , 2013, ICLR.

[85]  Joan Bruna,et al.  Intriguing properties of neural networks , 2013, ICLR.

[86]  Jie Han,et al.  Approximate computing: An emerging paradigm for energy-efficient design , 2013, 2013 18th IEEE European Test Symposium (ETS).

[87]  J. C. Scott,et al.  Nonvolatile Memory Elements Based on Organic Materials , 2007 .

[88]  Christof Teuscher,et al.  Memristor-based reservoir computing , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[89]  D. Stewart,et al.  The crossbar latch: Logic value storage, restoration, and inversion in crossbar circuits , 2005 .

[90]  E. Tulving How many memory systems are there , 1985 .

[91]  E. Bienenstock,et al.  Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex , 1982, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[92]  Jens Bürger,et al.  Computational Capacity and Energy Consumption of Complex Resistive Switch Networks , 2015, ArXiv.

[93]  Yoshua Bengio,et al.  Training deep neural networks with low precision multiplications , 2014 .

[94]  Hitoshi Kubota,et al.  Controlling the phase locking of stochastic magnetic bits for ultra-low power computation , 2016, Scientific Reports.

[95]  Geoffrey E. Hinton,et al.  Learning representations by back-propagating errors , 1986, Nature.

[96]  Zoran Konkoli,et al.  On Reservoir Computing: From Mathematical Foundations to Unconventional Applications , 2017 .

[97]  Zhaohao Wang,et al.  An overview of spin-based integrated circuits , 2014, 2014 19th Asia and South Pacific Design Automation Conference (ASP-DAC).

[98]  Richard G. Baraniuk,et al.  Sparse Coding via Thresholding and Local Competition in Neural Circuits , 2008, Neural Computation.

[99]  Christof Teuscher,et al.  Synaptic Weight States in a Locally Competitive Algorithm for Neuromorphic Memristive Hardware , 2015, IEEE Transactions on Nanotechnology.

[100]  Eric Pop,et al.  Phase change materials and phase change memory , 2014 .

[101]  Boris S. Gutkin,et al.  Passive Dendrites Enable Single Neurons to Compute Linearly Non-separable Functions , 2013, PLoS Comput. Biol..

[102]  M. Kozicki,et al.  Electrochemical metallization memories—fundamentals, applications, prospects , 2011, Nanotechnology.

[103]  Jacques-Olivier Klein,et al.  Spin-Transfer Torque Magnetic Memory as a Stochastic Memristive Synapse for Neuromorphic Systems , 2015, IEEE Transactions on Biomedical Circuits and Systems.

[104]  Théo Cabaret,et al.  Etude, réalisation et caractérisation de memristors organiques électro-greffés en tant que nanosynapses de circuits neuro-inspirés , 2014 .

[105]  M. Meister,et al.  Fast and Slow Contrast Adaptation in Retinal Circuitry , 2002, Neuron.

[106]  H-S Philip Wong,et al.  Memory leads the way to better computing. , 2015, Nature nanotechnology.

[107]  Yu Chen,et al.  Polymer memristor for information storage and neuromorphic applications , 2014 .

[108]  Gregory Cohen,et al.  Synthesis of neural networks for spatio-temporal spike pattern recognition and processing , 2013, Front. Neurosci..

[109]  J. Yang,et al.  A compact modeling of TiO2-TiO2–x memristor , 2013 .

[110]  D. Ielmini,et al.  Phase change materials and their application to nonvolatile memories. , 2010, Chemical reviews.

[111]  B. Park,et al.  Unipolar resistive switching in insulating niobium oxide film and probing electroforming induced metallic components , 2011 .

[112]  Pritish Narayanan,et al.  Neuromorphic computing using non-volatile memory , 2017 .

[113]  G. Bi,et al.  Synaptic modification by correlated activity: Hebb's postulate revisited. , 2001, Annual review of neuroscience.

[114]  Roland Vollgraf,et al.  Fashion-MNIST: a Novel Image Dataset for Benchmarking Machine Learning Algorithms , 2017, ArXiv.

[115]  Jussi Kangasharju,et al.  Realizing the Internet of Nano Things: Challenges, Solutions, and Applications , 2013, Computer.

[116]  J. Grollier,et al.  A ferroelectric memristor. , 2012, Nature materials.

[117]  Nikola Kasabov,et al.  Dynamic evolving spiking neural networks for on-line spatio- and spectro-temporal pattern recognition. , 2013, Neural networks : the official journal of the International Neural Network Society.

[118]  Benjamin Schrauwen,et al.  Oger: modular learning architectures for large-scale sequential processing , 2012, J. Mach. Learn. Res..

[119]  F. Corinto,et al.  Memristor Model Comparison , 2013, IEEE Circuits and Systems Magazine.

[120]  Ronald J. Williams,et al.  A Learning Algorithm for Continually Running Fully Recurrent Neural Networks , 1989, Neural Computation.

[121]  Jang‐Sik Lee,et al.  Integration scheme of nanoscale resistive switching memory using bottom-up processes at room temperature for high-density memory applications , 2016, Scientific reports.

[122]  Bruno Jousselme,et al.  One-step electrochemical modification of carbon nanotubes by ruthenium complexes via new diazonium salts , 2008 .

[123]  Chung Lam,et al.  Brain-like associative learning using a nanoscale non-volatile phase change synaptic device array , 2014, Front. Neurosci..

[124]  Boris N. Oreshkin,et al.  Machine learning approaches to network anomaly detection , 2007 .

[125]  Christof Teuscher,et al.  Non-temporal logic performance of an atomic switch network , 2017, 2017 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[126]  Giacomo Indiveri,et al.  A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128K synapses , 2015, Front. Neurosci..

[127]  H.-S. Philip Wong,et al.  Energy efficient programming of nanoelectronic synaptic devices for large-scale implementation of associative and temporal sequence learning , 2011, 2011 International Electron Devices Meeting.

[128]  J. Fodor,et al.  Connectionism and cognitive architecture: A critical analysis , 1988, Cognition.

[129]  Jim D. Garside,et al.  SpiNNaker: A 1-W 18-Core System-on-Chip for Massively-Parallel Neural Network Simulation , 2013, IEEE Journal of Solid-State Circuits.

[130]  Rainer Waser,et al.  Phase-Change and Redox-Based Resistive Switching Memories , 2015, Proceedings of the IEEE.

[131]  Tae Hoon Lee,et al.  Tailoring Transient-Amorphous States: Towards Fast and Power-Efficient Phase-Change Memory and Neuromorphic Computing , 2014, Advanced materials.

[132]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[133]  Damien Querlioz,et al.  Learning with memristive devices: How should we model their behavior? , 2011, 2011 IEEE/ACM International Symposium on Nanoscale Architectures.

[134]  Jan van den Hurk,et al.  Nanobatteries in redox-based resistive switches require extension of memristor theory , 2013, Nature Communications.

[135]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[136]  Herbert Jaeger,et al.  Echo State Property Linked to an Input: Exploring a Fundamental Characteristic of Recurrent Neural Networks , 2013, Neural Computation.

[137]  Yoshua Bengio,et al.  Gated Feedback Recurrent Neural Networks , 2015, ICML.

[138]  O. Richard,et al.  10×10nm2 Hf/HfOx crossbar resistive RAM with excellent performance, reliability and low-energy operation , 2011, 2011 International Electron Devices Meeting.

[139]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[140]  Massimiliano Giulioni,et al.  Real time unsupervised learning of visual stimuli in neuromorphic VLSI systems , 2015, Scientific Reports.

[141]  Kunihiko Fukushima,et al.  Neocognitron: A hierarchical neural network capable of visual pattern recognition , 1988, Neural Networks.

[142]  Hao Jiang,et al.  A spiking neuromorphic design with resistive crossbar , 2015, 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).

[143]  J.-P. Halain,et al.  The dual-gain 10 μm back-thinned 3k×3k CMOS-APS detector of the solar orbiter extreme UV imager , 2014, Astronomical Telescopes and Instrumentation.

[144]  Ali Khiat,et al.  Unsupervised learning in probabilistic neural networks with multi-state metal-oxide memristive synapses , 2016, Nature Communications.

[145]  Dominique Vuillaume,et al.  Filamentary switching: synaptic plasticity through device volatility. , 2015, ACS nano.

[146]  Mark Horowitz,et al.  1.1 Computing's energy problem (and what we can do about it) , 2014, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC).

[147]  Massimiliano Di Ventra,et al.  Neuromorphic, Digital, and Quantum Computation With Memory Circuit Elements , 2010, Proceedings of the IEEE.

[148]  A. Turing On Computable Numbers, with an Application to the Entscheidungsproblem. , 1937 .

[149]  Bernard Widrow,et al.  The No-Prop algorithm: A new learning algorithm for multilayer neural networks , 2013, Neural Networks.

[150]  L. Kish End of Moore's law: thermal (noise) death of integration in micro and nano electronics , 2002 .

[151]  Robert P. W. Duin,et al.  Feedforward neural networks with random weights , 1992, Proceedings., 11th IAPR International Conference on Pattern Recognition. Vol.II. Conference B: Pattern Recognition Methodology and Systems.

[152]  H.-S. Philip Wong,et al.  Face classification using electronic synapses , 2017, Nature Communications.

[153]  F. Zhuge,et al.  Mechanism for resistive switching in an oxide-based electrochemical metallization memory , 2012 .

[154]  Junfei Qiao,et al.  Hierarchical extreme learning machine for feedforward neural network , 2014, Neurocomputing.

[155]  Brendan J. Frey,et al.  A comparison of algorithms for inference and learning in probabilistic graphical models , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[156]  J. Magee Dendritic integration of excitatory synaptic input , 2000, Nature Reviews Neuroscience.

[157]  Serge Palacin,et al.  Directed organic grafting on locally doped silicon substrates. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[158]  Konstantin K. Likharev,et al.  CrossNets: Neuromorphic Hybrid CMOS/Nanoelectronic Networks , 2011 .

[159]  Damien Querlioz,et al.  Bioinspired Programming of Memory Devices for Implementing an Inference Engine , 2015, Proceedings of the IEEE.

[160]  Christof Teuscher,et al.  A model for variation- and fault-tolerant digital logic using self-assembled nanowire architectures , 2014, 2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[161]  Andrew S. Cassidy,et al.  A million spiking-neuron integrated circuit with a scalable communication network and interface , 2014, Science.

[162]  Lei Wang,et al.  Overview of emerging memristor families from resistive memristor to spintronic memristor , 2015, Journal of Materials Science: Materials in Electronics.

[163]  Surya Ganguli,et al.  Inferring hidden structure in multilayered neural circuits , 2017, bioRxiv.

[164]  B. Schrauwen,et al.  Reservoir computing and extreme learning machines for non-linear time-series data analysis , 2013, Neural Networks.

[165]  Paolo Fantini,et al.  Unsupervised Learning by Spike Timing Dependent Plasticity in Phase Change Memory (PCM) Synapses , 2016, Front. Neurosci..

[166]  Massimiliano Di Ventra,et al.  Experimental demonstration of associative memory with memristive neural networks , 2009, Neural Networks.

[167]  Peter Wegner,et al.  The Interactive Nature of Computing: Refuting the Strong Church–Turing Thesis , 2008, Minds and Machines.

[168]  R Waser,et al.  Compact modeling of CRS devices based on ECM cells for memory, logic and neuromorphic applications. , 2013, Nanotechnology.

[169]  Farnood Merrikh-Bayat,et al.  Efficient training algorithms for neural networks based on memristive crossbar circuits , 2015, 2015 International Joint Conference on Neural Networks (IJCNN).

[170]  Y. Liu,et al.  Synaptic Learning and Memory Functions Achieved Using Oxygen Ion Migration/Diffusion in an Amorphous InGaZnO Memristor , 2012 .

[171]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[172]  John von Neumann,et al.  First draft of a report on the EDVAC , 1993, IEEE Annals of the History of Computing.

[173]  T. Sejnowski,et al.  Nanoconnectomic upper bound on the variability of synaptic plasticity , 2015, eLife.

[174]  C. Teuscher,et al.  Volatile memristive devices as short-term memory in a neuromorphic learning architecture , 2014, 2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[175]  Saibal Mukhopadhyay,et al.  ReRAM Crossbar based Recurrent Neural Network for human activity detection , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[176]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[177]  Mark Buckwell,et al.  Conductance tomography of conductive filaments in intrinsic silicon-rich silica RRAM† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr04982b Click here for additional data file. , 2015, Nanoscale.

[178]  Hava T. Siegelmann,et al.  Neural networks and analog computation - beyond the Turing limit , 1999, Progress in theoretical computer science.

[179]  Giacomo Indiveri,et al.  Integration of nanoscale memristor synapses in neuromorphic computing architectures , 2013, Nanotechnology.

[180]  Jacques-Olivier Klein,et al.  On-Chip Universal Supervised Learning Methods for Neuro-Inspired Block of Memristive Nanodevices , 2015, ACM J. Emerg. Technol. Comput. Syst..

[181]  Hao Yu,et al.  An energy-efficient and high-throughput bitwise CNN on sneak-path-free digital ReRAM crossbar , 2017, 2017 IEEE/ACM International Symposium on Low Power Electronics and Design (ISLPED).

[182]  John J. Hopfield,et al.  Neural networks and physical systems with emergent collective computational abilities , 1999 .

[183]  J. F. Stoddart,et al.  Nanoscale molecular-switch crossbar circuits , 2003 .

[184]  Joshua B. Tenenbaum,et al.  Human-level concept learning through probabilistic program induction , 2015, Science.

[185]  Leon O. Chua,et al.  Hodgkin-Huxley Axon is Made of memristors , 2012, Int. J. Bifurc. Chaos.

[186]  Tadashi Yamazaki,et al.  The cerebellum as a liquid state machine , 2007, Neural Networks.

[187]  Alan E. Rowan,et al.  Molecular computing: paths to chemical Turing machines , 2015, Chemical science.

[188]  Jens Bürger,et al.  Variation-tolerant Computing with Memristive Reservoirs , 2013, 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[189]  R. Metzger Unimolecular electronics. , 2015, Chemical reviews.

[190]  André van Schaik,et al.  Explicit Computation of Input Weights in Extreme Learning Machines , 2014, ArXiv.

[191]  Romain Brette,et al.  Philosophy of the Spike: Rate-Based vs. Spike-Based Theories of the Brain , 2015, Front. Syst. Neurosci..

[192]  Albert B Novikoff,et al.  ON CONVERGENCE PROOFS FOR PERCEPTRONS , 1963 .

[193]  G. W. Burr,et al.  Experimental demonstration and tolerancing of a large-scale neural network (165,000 synapses), using phase-change memory as the synaptic weight element , 2015, 2014 IEEE International Electron Devices Meeting.

[194]  André van Schaik,et al.  Neuromorphic Hardware Architecture Using the Neural Engineering Framework for Pattern Recognition , 2017, IEEE Transactions on Biomedical Circuits and Systems.

[195]  Masakazu Aono,et al.  A theoretical and experimental study of neuromorphic atomic switch networks for reservoir computing , 2013, Nanotechnology.

[196]  C. Gamrat,et al.  An Organic Nanoparticle Transistor Behaving as a Biological Spiking Synapse , 2009, 0907.2540.

[197]  J. Knott The organization of behavior: A neuropsychological theory , 1951 .

[198]  Yuchao Yang,et al.  Observation of conducting filament growth in nanoscale resistive memories , 2012, Nature Communications.

[199]  Dmitri Strukov,et al.  Manhattan rule training for memristive crossbar circuit pattern classifiers , 2015, 2015 IEEE 9th International Symposium on Intelligent Signal Processing (WISP) Proceedings.

[200]  W. Senn,et al.  Learning by the Dendritic Prediction of Somatic Spiking , 2014, Neuron.

[201]  Johannes Schemmel,et al.  Is a 4-Bit Synaptic Weight Resolution Enough? – Constraints on Enabling Spike-Timing Dependent Plasticity in Neuromorphic Hardware , 2012, Front. Neurosci..

[202]  Leon O. Chua,et al.  If it’s pinched it’s a memristor , 2014 .

[203]  Gökmen Tayfun,et al.  Acceleration of Deep Neural Network Training with Resistive Cross-Point Devices: Design Considerations , 2016, Front. Neurosci..

[204]  Harald Haas,et al.  Harnessing Nonlinearity: Predicting Chaotic Systems and Saving Energy in Wireless Communication , 2004, Science.

[205]  Dmitri B. Strukov,et al.  Low area overhead in-situ training approach for memristor-based classifier , 2015, Proceedings of the 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH´15).

[206]  M. R. Uddin,et al.  A plasma-treated chalcogenide switch device for stackable scalable 3D nanoscale memory , 2013, Nature Communications.

[207]  D. Strukov,et al.  CMOL FPGA: a reconfigurable architecture for hybrid digital circuits with two-terminal nanodevices , 2005 .

[208]  James L. McClelland Parallel Distributed Processing , 2005 .

[209]  Chrisantha Fernando,et al.  Pattern Recognition in a Bucket , 2003, ECAL.

[210]  L. Abbott,et al.  Competitive Hebbian learning through spike-timing-dependent synaptic plasticity , 2000, Nature Neuroscience.

[211]  Wilfried Vandervorst,et al.  Three-dimensional observation of the conductive filament in nanoscaled resistive memory devices. , 2014, Nano letters.

[212]  Wolfram Schiffmann,et al.  Speeding Up Backpropagation Algorithms by Using Cross-Entropy Combined with Pattern Normalization , 1998, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[213]  Jacques-Olivier Klein,et al.  Design and Modeling of a Neuro-Inspired Learning Circuit Using Nanotube-Based Memory Devices , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[214]  Zhigang Zeng,et al.  Synchronization control of a class of memristor-based recurrent neural networks , 2012, Inf. Sci..

[215]  R. Muller,et al.  Polymer and Organic Nonvolatile Memory Devices , 2011 .

[216]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[217]  Jacques-Olivier Klein,et al.  Cross-Point Architecture for Spin-Transfer Torque Magnetic Random Access Memory , 2012, IEEE Transactions on Nanotechnology.

[218]  G. Foffani,et al.  Spike Timing, Spike Count, and Temporal Information for the Discrimination of Tactile Stimuli in the Rat Ventrobasal Complex , 2009, The Journal of Neuroscience.

[219]  Vincent Vanhoucke,et al.  Improving the speed of neural networks on CPUs , 2011 .

[220]  A G Barto,et al.  Toward a modern theory of adaptive networks: expectation and prediction. , 1981, Psychological review.

[221]  Bartlett W. Mel,et al.  Pyramidal Neuron as Two-Layer Neural Network , 2003, Neuron.

[222]  K. Steinhubl Design of Ion-Implanted MOSFET'S with Very Small Physical Dimensions , 1974 .

[223]  Ralph Etienne-Cummings,et al.  A time-series processor for sonar mapping and novelty detection , 2003, Proceedings of the 2003 International Symposium on Circuits and Systems, 2003. ISCAS '03..

[224]  Wulfram Gerstner,et al.  Does computational neuroscience need new synaptic learning paradigms? , 2016, Current Opinion in Behavioral Sciences.

[225]  Yukihiro Kaneko,et al.  Back-Propagation Operation for Analog Neural Network Hardware with Synapse Components Having Hysteresis Characteristics , 2014, PloS one.

[226]  Jacques-Olivier Klein,et al.  Robust learning approach for neuro-inspired nanoscale crossbar architecture , 2014, ACM J. Emerg. Technol. Comput. Syst..

[227]  Anomaly detection in the right hemisphere: The influence of visuospatial factors , 2004, Brain and Cognition.

[228]  Carver A. Mead,et al.  Neuromorphic electronic systems , 1990, Proc. IEEE.

[229]  Kang L. Wang,et al.  High-speed graphene transistors with a self-aligned nanowire gate , 2010, Nature.

[230]  Tae Hee Kim,et al.  Nanoparticle assemblies as memristors. , 2009, Nano letters.

[231]  Fabien Alibart,et al.  A Memristive Nanoparticle/Organic Hybrid Synapstor for Neuroinspired Computing , 2011, ArXiv.

[232]  M. Marinella,et al.  A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. , 2017, Nature materials.

[233]  Zhaohao Wang,et al.  On-chip supervised learning rule for ultra high density neural crossbar using memristor for synapse and neuron , 2014, 2014 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[234]  Takhee Lee,et al.  Organic resistive nonvolatile memory materials , 2012 .

[235]  Susan Stepney,et al.  Computability and Complexity of Unconventional Computing Devices , 2017, Computational Matter.

[236]  Yuichi Nakamura,et al.  Approximation of dynamical systems by continuous time recurrent neural networks , 1993, Neural Networks.

[237]  Yuchao Yang,et al.  Building Neuromorphic Circuits with Memristive Devices , 2013, IEEE Circuits and Systems Magazine.

[238]  Wei D. Lu,et al.  Experimental Demonstration of Feature Extraction and Dimensionality Reduction Using Memristor Networks. , 2017, Nano letters.

[239]  M. C. Soriano,et al.  A Unified Framework for Reservoir Computing and Extreme Learning Machines based on a Single Time-delayed Neuron , 2015, Scientific Reports.

[240]  E. Vianello,et al.  HfO2-Based OxRAM Devices as Synapses for Convolutional Neural Networks , 2015, IEEE Transactions on Electron Devices.

[241]  Josep L. Rosselló,et al.  FPGA-Based Stochastic Echo State Networks for Time-Series Forecasting , 2015, Comput. Intell. Neurosci..

[242]  K. Balasubramanian,et al.  A Selective Electrochemical Approach to Carbon Nanotube Field-Effect Transistors , 2004 .

[243]  Jürgen Schmidhuber,et al.  Biologically Plausible Speech Recognition with LSTM Neural Nets , 2004, BioADIT.

[244]  Wojciech Zaremba,et al.  An Empirical Exploration of Recurrent Network Architectures , 2015, ICML.

[245]  Damien Querlioz,et al.  Spintronic nanoscillators for unconventional circuits , 2017, 2017 European Conference on Circuit Theory and Design (ECCTD).

[246]  Kunihiko Fukushima,et al.  Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Visual Pattern Recognition , 1982 .

[247]  Jacques-Olivier Klein,et al.  Bioinspired networks with nanoscale memristive devices that combine the unsupervised and supervised learning approaches , 2012, 2012 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH).

[248]  Jiale Liang,et al.  Cross-Point Memory Array Without Cell Selectors—Device Characteristics and Data Storage Pattern Dependencies , 2010, IEEE Transactions on Electron Devices.

[249]  Peter Ford Dominey,et al.  A Model of Corticostriatal Plasticity for Learning Oculomotor Associations and Sequences , 1995, Journal of Cognitive Neuroscience.

[250]  M. Dragoman,et al.  Memristor device based on carbon nanotubes decorated with gold nanoislands , 2011 .

[251]  Weisheng Zhao,et al.  Electrical Modeling of Stochastic Spin Transfer Torque Writing in Magnetic Tunnel Junctions for Memory and Logic Applications , 2013, IEEE Transactions on Magnetics.

[252]  Rodrigo Alvarez-Icaza,et al.  Neurogrid: A Mixed-Analog-Digital Multichip System for Large-Scale Neural Simulations , 2014, Proceedings of the IEEE.

[253]  Ligang Gao,et al.  High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm , 2011, Nanotechnology.

[254]  Miao Hu,et al.  ISAAC: A Convolutional Neural Network Accelerator with In-Situ Analog Arithmetic in Crossbars , 2016, 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA).

[255]  Christof Teuscher Turing's connectionism - an investigation of neural network architectures , 2002, Discrete mathematics and theoretical computer science.

[256]  P. Narayanan,et al.  Access devices for 3D crosspoint memorya) , 2014 .

[257]  Massimiliano Di Ventra,et al.  On the physical properties of memristive, memcapacitive and meminductive systems , 2013, Nanotechnology.

[258]  Henry Markram,et al.  Real-Time Computing Without Stable States: A New Framework for Neural Computation Based on Perturbations , 2002, Neural Computation.

[259]  Wolfgang Maass,et al.  Bayesian Computation Emerges in Generic Cortical Microcircuits through Spike-Timing-Dependent Plasticity , 2013, PLoS Comput. Biol..

[260]  Julie Grollier,et al.  Solid-state memories based on ferroelectric tunnel junctions. , 2012, Nature nanotechnology.

[261]  Bernard Brezzo,et al.  TrueNorth: Design and Tool Flow of a 65 mW 1 Million Neuron Programmable Neurosynaptic Chip , 2015, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[262]  Byoung Hun Lee,et al.  Neuromorphic Hardware System for Visual Pattern Recognition With Memristor Array and CMOS Neuron , 2015, IEEE Transactions on Industrial Electronics.

[263]  L. F. Abbott,et al.  Generating Coherent Patterns of Activity from Chaotic Neural Networks , 2009, Neuron.

[264]  A. Driskill-Smith,et al.  Fully integrated 54nm STT-RAM with the smallest bit cell dimension for high density memory application , 2010, 2010 International Electron Devices Meeting.

[265]  Mark D. McDonnell,et al.  Deep extreme learning machines: supervised autoencoding architecture for classification , 2016, Neurocomputing.

[266]  Narayan Srinivasa,et al.  A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. , 2012, Nano letters.

[267]  Mohammed Ismail,et al.  Analog VLSI Implementation of Neural Systems , 2011, The Kluwer International Series in Engineering and Computer Science.

[268]  E. Oja Simplified neuron model as a principal component analyzer , 1982, Journal of mathematical biology.

[269]  Ran El-Yaniv,et al.  Binarized Neural Networks , 2016, NIPS.

[270]  D. Querlioz,et al.  Visual Pattern Extraction Using Energy-Efficient “2-PCM Synapse” Neuromorphic Architecture , 2012, IEEE Transactions on Electron Devices.

[271]  Audrius V. Avizienis,et al.  Emergent Criticality in Complex Turing B‐Type Atomic Switch Networks , 2012, Advanced materials.

[272]  Fuzhen Zhuang,et al.  Learning deep representations via extreme learning machines , 2015, Neurocomputing.

[273]  Cory Merkel,et al.  Design and Analysis of a Neuromemristive Reservoir Computing Architecture for Biosignal Processing , 2016, Front. Neurosci..

[274]  Victor Erokhin,et al.  Bio-inspired adaptive networks based on organic memristors , 2010, Nano Commun. Networks.

[275]  A. Horvath,et al.  Energy Implications of Economizer Use in California Data Centers , 2008 .

[276]  Weijie Wang,et al.  Enabling Universal Memory by Overcoming the Contradictory Speed and Stability Nature of Phase-Change Materials , 2012, Scientific Reports.

[277]  Shih-Chii Liu,et al.  Analog VLSI: Circuits and Principles , 2002 .

[278]  Jens Bürger,et al.  Hierarchical composition of memristive networks for real-time computing , 2015, Proceedings of the 2015 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH´15).

[279]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[280]  Damien Querlioz,et al.  Interplay of multiple synaptic plasticity features in filamentary memristive devices for neuromorphic computing , 2016, Scientific Reports.

[281]  S. Marsland Novelty Detection in Learning Systems , 2008 .

[282]  R. Quiroga,et al.  Extracting information from neuronal populations : information theory and decoding approaches , 2022 .

[283]  Youngjune Park,et al.  Artificial Synapses with Short- and Long-Term Memory for Spiking Neural Networks Based on Renewable Materials. , 2017, ACS nano.

[284]  Pinaki Mazumder,et al.  CMOS and Memristor-Based Neural Network Design for Position Detection , 2012, Proceedings of the IEEE.

[285]  J. Yang,et al.  State Dynamics and Modeling of Tantalum Oxide Memristors , 2013, IEEE Transactions on Electron Devices.

[286]  Fabien Alibart,et al.  Plasticity in memristive devices for spiking neural networks , 2015, Front. Neurosci..

[287]  Khairudin Mohamed,et al.  A review of roll-to-roll nanoimprint lithography , 2014, Nanoscale Research Letters.

[288]  Massimiliano Di Ventra,et al.  Memcomputing: A computing paradigm to store and process information on the same physical platform , 2014 .

[289]  W. Pitts,et al.  A Logical Calculus of the Ideas Immanent in Nervous Activity (1943) , 2021, Ideas That Created the Future.

[290]  John J. Hopfield,et al.  Simple 'neural' optimization networks: An A/D converter, signal decision circuit, and a linear programming circuit , 1986 .

[291]  Terence D. Sanger,et al.  Optimal unsupervised learning in a single-layer linear feedforward neural network , 1989, Neural Networks.

[292]  Zoran Konkoli,et al.  On the Inverse Pattern Recognition Problem in the Context of the Time-Series Data Processing with Memristor Networks , 2017 .

[293]  David Kappel,et al.  STDP Installs in Winner-Take-All Circuits an Online Approximation to Hidden Markov Model Learning , 2014, PLoS Comput. Biol..

[294]  J Joshua Yang,et al.  Memristive devices for computing. , 2013, Nature nanotechnology.

[295]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[296]  Richard F. Lyon,et al.  A computational model of filtering, detection, and compression in the cochlea , 1982, ICASSP.

[297]  F. Gage,et al.  Neurogenesis in the adult human hippocampus , 1998, Nature Medicine.

[298]  Manan Suri,et al.  Exploiting Intrinsic Variability of Filamentary Resistive Memory for Extreme Learning Machine Architectures , 2015, IEEE Transactions on Nanotechnology.

[299]  Bernard Widrow,et al.  Perceptrons, adalines, and backpropagation , 1998 .

[300]  Timothée Masquelier,et al.  Unsupervised Learning of Visual Features through Spike Timing Dependent Plasticity , 2007, PLoS Comput. Biol..

[301]  Weisheng Zhao,et al.  Neuromorphic function learning with carbon nanotube based synapses , 2013, Nanotechnology.

[302]  Daniele Ielmini,et al.  Introduction to Nanoionic Elements for Information Technology , 2016 .