Input nonlinearities can shape beyond-pairwise correlations and improve information transmission by neural populations.

While recent recordings from neural populations show beyond-pairwise, or higher-order, correlations (HOC), we have little understanding of how HOC arise from network interactions and of how they impact encoded information. Here, we show that input nonlinearities imply HOC in spin-glass-type statistical models. We then discuss one such model with parametrized pairwise- and higher-order interactions, revealing conditions under which beyond-pairwise interactions increase the mutual information between a given stimulus type and the population responses. For jointly Gaussian stimuli, coding performance is improved by shaping output HOC only when neural firing rates are constrained to be low. For stimuli with skewed probability distributions (like natural image luminances), performance improves for all firing rates. Our work suggests surprising connections between nonlinear integration of neural inputs, stimulus statistics, and normative theories of population coding. Moreover, it suggests that the inclusion of beyond-pairwise interactions could improve the performance of Boltzmann machines for machine learning and signal processing applications.

[1]  Geoffrey E. Hinton,et al.  Deep Boltzmann Machines , 2009, AISTATS.

[2]  Shan Yu,et al.  Higher-Order Interactions Characterized in Cortical Activity , 2011, The Journal of Neuroscience.

[3]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[4]  A. Destexhe,et al.  Synaptic background activity enhances the responsiveness of neocortical pyramidal neurons. , 2000, Journal of neurophysiology.

[5]  Jonathon Shlens,et al.  The Structure of Large-Scale Synchronized Firing in Primate Retina , 2009, The Journal of Neuroscience.

[6]  E. Jaynes Information Theory and Statistical Mechanics , 1957 .

[7]  Eric Shea-Brown,et al.  Stimulus-Dependent Correlations and Population Codes , 2008, Neural Computation.

[8]  Wolfgang Maass,et al.  Computing with spiking neurons , 1999 .

[9]  Bartlett W. Mel Synaptic integration in an excitable dendritic tree. , 1993, Journal of neurophysiology.

[10]  Ifije E. Ohiorhenuan,et al.  Sparse coding and high-order correlations in fine-scale cortical networks , 2010, Nature.

[11]  Eric Shea-Brown,et al.  When do microcircuits produce beyond-pairwise correlations? , 2014, Front. Comput. Neurosci..

[12]  Alexandre Pouget,et al.  Insights from a Simple Expression for Linear Fisher Information in a Recurrently Connected Population of Spiking Neurons , 2011, Neural Computation.

[13]  Bruno A. Olshausen,et al.  Modeling Higher-Order Correlations within Cortical Microcolumns , 2014, PLoS Comput. Biol..

[14]  M. DeWeese,et al.  Non-Gaussian Membrane Potential Dynamics Imply Sparse, Synchronous Activity in Auditory Cortex , 2006, The Journal of Neuroscience.

[15]  Daniel L. Ruderman,et al.  Origins of scaling in natural images , 1996, Vision Research.

[16]  Yu Hu,et al.  The Sign Rule and Beyond: Boundary Effects, Flexibility, and Noise Correlations in Neural Population Codes , 2013, PLoS Comput. Biol..

[17]  Gasper Tkacik,et al.  Optimal population coding by noisy spiking neurons , 2010, Proceedings of the National Academy of Sciences.

[18]  Shun-ichi Amari,et al.  Information geometry on hierarchy of probability distributions , 2001, IEEE Trans. Inf. Theory.

[19]  Stefano Panzeri,et al.  The impact of high-order interactions on the rate of synchronous discharge and information transmission in somatosensory cortex , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  T. Hromádka,et al.  Sparse Representation of Sounds in the Unanesthetized Auditory Cortex , 2008, PLoS biology.

[21]  David Pfau,et al.  Dead leaves and the dirty ground: low-level image statistics in transmissive and occlusive imaging environments. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Michael J. Berry,et al.  Searching for Collective Behavior in a Large Network of Sensory Neurons , 2013, PLoS Comput. Biol..

[23]  W. Bialek,et al.  Statistical thermodynamics of natural images. , 2008, Physical review letters.

[24]  Michael J. Berry,et al.  Weak pairwise correlations imply strongly correlated network states in a neural population , 2005, Nature.

[25]  Eric Shea-Brown,et al.  A Simple Mechanism for Beyond-Pairwise Correlations in Integrate-and-Fire Neurons , 2015, The Journal of Mathematical Neuroscience (JMN).

[26]  Vijay Balasubramanian,et al.  Natural Images from the Birthplace of the Human Eye , 2011, PloS one.

[27]  Eero P. Simoncelli,et al.  Natural image statistics and neural representation. , 2001, Annual review of neuroscience.

[28]  Michael Robert DeWeese,et al.  A Sparse Coding Model with Synaptically Local Plasticity and Spiking Neurons Can Account for the Diverse Shapes of V1 Simple Cell Receptive Fields , 2011, PLoS Comput. Biol..

[29]  R. Quian Quiroga Principles of neural coding. , 2011, Current biology : CB.

[30]  David R. Brillinger,et al.  Empirical examination of the threshold model of neuron firing , 1979, Biological Cybernetics.

[31]  Nelson Spruston,et al.  Synaptic amplification by dendritic spines enhances input cooperativity , 2012, Nature.

[32]  Yutaka Sakai,et al.  Synchronous Firing and Higher-Order Interactions in Neuron Pool , 2003, Neural Computation.

[33]  Michael J. Berry,et al.  Network information and connected correlations. , 2003, Physical review letters.

[34]  Geoffrey E. Hinton,et al.  OPTIMAL PERCEPTUAL INFERENCE , 1983 .

[35]  Haim Sompolinsky,et al.  Nonlinear Population Codes , 2004, Neural Computation.

[36]  Jonathon Shlens,et al.  The Structure of Multi-Neuron Firing Patterns in Primate Retina , 2006, The Journal of Neuroscience.

[37]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[38]  Konrad P Kording,et al.  How advances in neural recording affect data analysis , 2011, Nature Neuroscience.

[39]  Alexander S. Ecker,et al.  The Effect of Noise Correlations in Populations of Diversely Tuned Neurons , 2011, The Journal of Neuroscience.

[40]  R. Segev,et al.  Sparse low-order interaction network underlies a highly correlated and learnable neural population code , 2011, Proceedings of the National Academy of Sciences.

[41]  Elad Schneidman,et al.  Stimulus-dependent Maximum Entropy Models of Neural Population Codes , 2012, PLoS Comput. Biol..

[42]  Michael I. Jordan,et al.  Advances in Neural Information Processing Systems 30 , 1995 .

[43]  Christopher J. Bishop,et al.  Pulsed Neural Networks , 1998 .

[44]  L. Abbott,et al.  Responses of neurons in primary and inferior temporal visual cortices to natural scenes , 1997, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  Ehud Zohary,et al.  Correlated neuronal discharge rate and its implications for psychophysical performance , 1994, Nature.

[46]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[47]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[48]  Eric Shea-Brown,et al.  Triplet correlations among similarly tuned cells impact population coding , 2015, Front. Comput. Neurosci..

[49]  Aapo Hyvärinen,et al.  Proceedings of the 13th International Conference on Artificial Intelligence and Statistics (AISTATS) , 2010 .

[50]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[51]  Joel Zylberberg,et al.  Inhibitory Interneurons Decorrelate Excitatory Cells to Drive Sparse Code Formation in a Spiking Model of V1 , 2013, The Journal of Neuroscience.

[52]  M. Bethge,et al.  Common input explains higher-order correlations and entropy in a simple model of neural population activity. , 2011, Physical review letters.

[53]  Michael Robert DeWeese,et al.  Sparse Coding Models Can Exhibit Decreasing Sparseness while Learning Sparse Codes for Natural Images , 2013, PLoS Comput. Biol..

[54]  Bartlett W. Mel,et al.  Computational subunits in thin dendrites of pyramidal cells , 2004, Nature Neuroscience.

[55]  B. Kampa,et al.  Synaptic integration in dendritic trees. , 2005, Journal of neurobiology.

[56]  F. Rieke,et al.  Noise correlations improve response fidelity and stimulus encoding , 2010, Nature.

[57]  R. Millane,et al.  Effects of occlusion, edges, and scaling on the power spectra of natural images. , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.

[58]  William Bialek,et al.  Statistics of Natural Images: Scaling in the Woods , 1993, NIPS.