Machine learning based approach to predict ductile damage model parameters for polycrystalline metals

[1]  JeeYeon Plohr The Preston-Tonks-Wallace (PTW) Model Parameterization of Al-6061 With Sesame EoS , 2022 .

[2]  Hari S. Viswanathan,et al.  A framework for data-driven solution and parameter estimation of PDEs using conditional generative adversarial networks , 2021, Nature Computational Science.

[3]  D. Luscher,et al.  The Modified Void Nucleation and Growth Model (MNAG) for Damage Evolution in BCC Ta , 2021, Applied Sciences.

[4]  T. Nguyen,et al.  Bayesian calibration of a physics-based crystal plasticity and damage model , 2021 .

[5]  YunKyong Hyon,et al.  Identifying Pb-free perovskites for solar cells by machine learning , 2019, npj Computational Materials.

[6]  Youzuo Lin,et al.  InversionNet: An Efficient and Accurate Data-Driven Full Waveform Inversion , 2018, IEEE Transactions on Computational Imaging.

[7]  Satish Karra,et al.  Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning , 2018, Scientific Reports.

[8]  Alán Aspuru-Guzik,et al.  Inverse molecular design using machine learning: Generative models for matter engineering , 2018, Science.

[9]  K. Butler,et al.  Machine learning for molecular and materials science , 2018, Nature.

[10]  P. Forquin,et al.  A pulse-shaping technique to investigate the behaviour of brittle materials subjected to plate-impact tests , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  P. Withers,et al.  Response and representation of ductile damage under varying shock loading conditions in tantalum , 2016 .

[12]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[13]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[14]  J. Boettger,et al.  Global Equation of State for Copper , 2011 .

[15]  G. Kanel,et al.  Spall fracture: methodological aspects, mechanisms and governing factors , 2010 .

[16]  Q. Zuo,et al.  An implicit algorithm for a rate-dependent ductile failure model , 2008 .

[17]  A. Zurek,et al.  Void Coalescence Model for Ductile Damage , 2002 .

[18]  M. Shashkov,et al.  The Construction of Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy , 1998 .

[19]  M. Meyers Dynamic Behavior of Materials , 1994 .

[20]  J. N. Johnson,et al.  Rate‐dependent ductile failure model , 1993 .

[21]  D. Wallace Irreversible thermodynamics of overdriven shocks in solids , 1981 .

[22]  D. Wallace Nature of the process of overdriven shocks in metals , 1981 .

[23]  V. Tvergaard Influence of voids on shear band instabilities under plane strain conditions , 1981 .

[24]  J. N. Johnson Dynamic fracture and spallation in ductile solids , 1981 .

[25]  Albert C. Holt,et al.  Static and Dynamic Pore‐Collapse Relations for Ductile Porous Materials , 1972 .

[26]  R. Haftka,et al.  Accelerating high-strain continuum-scale brittle fracture simulations with machine learning , 2021 .

[27]  J. B. Stone,et al.  Using Richtmyer–Meshkov Instabilities to Estimate Metal Strength at Very High Rates , 2016 .

[28]  J. Segurado,et al.  Multiscale modeling of plasticity based on embedding the viscoplastic self-consistent formulation in implicit finite elements , 2012 .

[29]  M. Obrovac,et al.  Alloy Negative Electrodes for High Energy Density Metal-Ion Cells , 2011 .

[30]  Andy J. Keane,et al.  Recent advances in surrogate-based optimization , 2009 .

[31]  Dean L. Preston,et al.  Model of plastic deformation for extreme loading conditions , 2003 .

[32]  R. Cortés,et al.  Dynamic growth of microvoids under combined hydrostatic and deviatoric stresses , 1992 .

[33]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .