Footstep Planning for Hexapod Robots Based on 3D Quasi-static Equilibrium Support Region

[1]  Timothy Bretl,et al.  Testing Static Equilibrium for Legged Robots , 2008, IEEE Transactions on Robotics.

[2]  Guangjun Liu,et al.  State estimation of a heavy-duty hexapod robot with passive compliant ankles based on the leg kinematics and IMU data fusion , 2018 .

[3]  Abderrahmane Kheddar,et al.  3-D Robust Stability Polyhedron in Multicontact , 2018, IEEE Transactions on Robotics.

[4]  Ian R. Manchester,et al.  Bounding on rough terrain with the LittleDog robot , 2011, Int. J. Robotics Res..

[5]  Stefan Schaal,et al.  Learning, planning, and control for quadruped locomotion over challenging terrain , 2011, Int. J. Robotics Res..

[6]  Claudio Semini,et al.  Feasible Region: An Actuation-Aware Extension of the Support Region , 2019, IEEE Transactions on Robotics.

[7]  Marco Hutter,et al.  Gait and Trajectory Optimization for Legged Systems Through Phase-Based End-Effector Parameterization , 2018, IEEE Robotics and Automation Letters.

[8]  Darwin G. Caldwell,et al.  A Feasibility Metric for Trajectory Optimization of Legged Robots using Wrench Polytopes , 2017, ArXiv.

[9]  Pablo González de Santos,et al.  Free Gaits for Quadruped Robots over Irregular Terrain , 2002, Int. J. Robotics Res..

[10]  Satoshi Kagami,et al.  Autonomous navigation of a humanoid robot over unknown rough terrain using a laser range sensor , 2012, Int. J. Robotics Res..

[11]  Sylvain Miossec,et al.  Planning contact points for humanoid robots , 2013, Robotics Auton. Syst..

[12]  Wei Guo,et al.  A free gait controller designed for a heavy load hexapod robot , 2019, Advances in Mechanical Engineering.

[13]  Piotr Skrzypczynski,et al.  Adaptive Motion Planning for Autonomous Rough Terrain Traversal with a Walking Robot , 2016, J. Field Robotics.

[14]  M. Hutter,et al.  A Universal Grid Map Library: Implementation and Use Case for Rough Terrain Navigation , 2016 .

[15]  Olivier Stasse,et al.  C-CROC: Continuous and Convex Resolution of Centroidal Dynamic Trajectories for Legged Robots in Multicontact Scenarios , 2020, IEEE Transactions on Robotics.

[16]  Marco Hutter,et al.  Trajectory Optimization for Wheeled-Legged Quadrupedal Robots Using Linearized ZMP Constraints , 2019, IEEE Robotics and Automation Letters.

[17]  Sven Behnke,et al.  Anytime hybrid driving-stepping locomotion planning , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[18]  Siddhartha S. Srinivasa,et al.  CHOMP: Covariant Hamiltonian optimization for motion planning , 2013, Int. J. Robotics Res..

[19]  John M. Hsu,et al.  Inside the Virtual Robotics Challenge: Simulating Real-Time Robotic Disaster Response , 2015, IEEE Transactions on Automation Science and Engineering.

[20]  Alin Albu-Schäffer,et al.  Convex Properties of Center-of-Mass Trajectories for Locomotion Based on Divergent Component of Motion , 2018, IEEE Robotics and Automation Letters.

[21]  Olivier Stasse,et al.  Continuous Legged Locomotion Planning , 2017, IEEE Transactions on Robotics.

[22]  Navinda Kottege,et al.  Weaver: Hexapod robot for autonomous navigation on unstructured terrain , 2018, J. Field Robotics.

[23]  Timothy Bretl,et al.  Motion Planning for Legged Robots on Varied Terrain , 2008, Int. J. Robotics Res..

[24]  Guangjun Liu,et al.  Low Impact Force and Energy Consumption Motion Planning for Hexapod Robot with Passive Compliant Ankles , 2019, J. Intell. Robotic Syst..

[25]  Jan Wietrzykowski,et al.  Employing Natural Terrain Semantics in Motion Planning for a Multi-Legged Robot , 2018, Journal of Intelligent & Robotic Systems.