Observation of dually decoded regions of the human genome using ribosome profiling data

The recently developed ribosome profiling technique (Ribo-Seq) allows mapping of the locations of translating ribosomes on mRNAs with subcodon precision. When ribosome protected fragments (RPFs) are aligned to mRNA, a characteristic triplet periodicity pattern is revealed. We utilized the triplet periodicity of RPFs to develop a computational method for detecting transitions between reading frames that occur during programmed ribosomal frameshifting or in dual coding regions where the same nucleotide sequence codes for multiple proteins in different reading frames. Application of this method to ribosome profiling data obtained for human cells allowed us to detect several human genes where the same genomic segment is translated in more than one reading frame (from different transcripts as well as from the same mRNA) and revealed the translation of hitherto unpredicted coding open reading frames.

[1]  M. Sachs,et al.  Stringency of start codon selection modulates autoregulation of translation initiation factor eIF5 , 2011, Nucleic acids research.

[2]  Nicholas T. Ingolia,et al.  High-Resolution View of the Yeast Meiotic Program Revealed by Ribosome Profiling , 2011, Science.

[3]  David W. Reid,et al.  Primary Role for Endoplasmic Reticulum-bound Ribosomes in Cellular Translation Identified by Ribosome Profiling* , 2011, The Journal of Biological Chemistry.

[4]  R. Weiss,et al.  Translation Goes Global , 2011, Science.

[5]  J. Weissman,et al.  Selective Ribosome Profiling Reveals the Cotranslational Chaperone Action of Trigger Factor In Vivo , 2011, Cell.

[6]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[7]  A. Fire,et al.  Wobble base-pairing slows in vivo translation elongation in metazoans. , 2011, RNA.

[8]  Manolis Kellis,et al.  Locating protein-coding sequences under selection for additional, overlapping functions in 29 mammalian genomes. , 2011, Genome research.

[9]  S. Luo,et al.  RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. , 2011, RNA.

[10]  Markus Seiler,et al.  Translational Control via Protein-Regulated Upstream Open Reading Frames , 2011, Cell.

[11]  M. Selbach,et al.  Global quantification of mammalian gene expression control , 2011, Nature.

[12]  Bjorn-Erik Wulff,et al.  Elucidating the inosinome: global approaches to adenosine-to-inosine RNA editing , 2011, Nature Reviews Genetics.

[13]  Andrew E. Firth,et al.  Identification of evolutionarily conserved non-AUG-initiated N-terminal extensions in human coding sequences , 2011, Nucleic acids research.

[14]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[15]  Pavel V. Baranov,et al.  DARNED: a DAtabase of RNa EDiting in humans , 2010, Bioinform..

[16]  Nicholas T. Ingolia,et al.  Mammalian microRNAs predominantly act to decrease target mRNA levels , 2010, Nature.

[17]  Y. Pilpel,et al.  An Evolutionarily Conserved Mechanism for Controlling the Efficiency of Protein Translation , 2010, Cell.

[18]  Eytan Ruppin,et al.  Translation efficiency is determined by both codon bias and folding energy , 2010, Proceedings of the National Academy of Sciences.

[19]  Yan Zhang,et al.  Recode-2: new design, new search tools, and many more genes , 2009, Nucleic Acids Res..

[20]  A. Keith Dunker,et al.  Overlapping Genes Produce Proteins with Unusual Sequence Properties and Offer Insight into De Novo Protein Creation , 2009, Journal of Virology.

[21]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[22]  Tatiana A. Tatusova,et al.  NCBI Reference Sequences: current status, policy and new initiatives , 2008, Nucleic Acids Res..

[23]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[24]  Andrew E Firth,et al.  A conserved predicted pseudoknot in the NS2A-encoding sequence of West Nile and Japanese encephalitis flaviviruses suggests NS1' may derive from ribosomal frameshifting , 2009, Virology Journal.

[25]  K. Seuwen,et al.  Bioinformatics prediction of overlapping frameshifted translation products in mammalian transcripts , 2008, BMC Genomics.

[26]  James A. Cuff,et al.  Distinguishing protein-coding and noncoding genes in the human genome , 2007, Proceedings of the National Academy of Sciences.

[27]  Sumio Sugano,et al.  Diversity of Translation Start Sites May Define Increased Complexity of the Human Short ORFeome*S , 2007, Molecular & Cellular Proteomics.

[28]  Anton Nekrutenko,et al.  A First Look at ARFome: Dual-Coding Genes in Mammalian Genomes , 2007, PLoS Comput. Biol..

[29]  Daiki Matsuda,et al.  Close spacing of AUG initiation codons confers dicistronic character on a eukaryotic mRNA. , 2006, RNA.

[30]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[31]  L. Landweber,et al.  A genome-wide study of dual coding regions in human alternatively spliced genes. , 2005, Genome research.

[32]  Chris M. Brown,et al.  Detecting overlapping coding sequences in virus genomes , 2006, BMC Bioinformatics.

[33]  Anton Nekrutenko,et al.  Oscillating Evolution of a Mammalian Locus with Overlapping Reading Frames: An XLαs/ALEX Relay , 2005, PLoS genetics.

[34]  F. Clark,et al.  Understanding alternative splicing: towards a cellular code , 2005, Nature Reviews Molecular Cell Biology.

[35]  I. Brierley,et al.  Characterization of the frameshift signal of Edr, a mammalian example of programmed −1 ribosomal frameshifting , 2005, Nucleic acids research.

[36]  Jean YH Yang,et al.  Bioconductor: open software development for computational biology and bioinformatics , 2004, Genome Biology.

[37]  D. Haussler,et al.  Aligning multiple genomic sequences with the threaded blockset aligner. , 2004, Genome research.

[38]  M. Mann,et al.  Proteomic analysis of post-translational modifications , 2003, Nature Biotechnology.

[39]  Stevan R. Hubbard,et al.  IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA , 2002, Nature.

[40]  Alex E. Lash,et al.  Gene Expression Omnibus: NCBI gene expression and hybridization array data repository , 2002, Nucleic Acids Res..

[41]  P. Rigby,et al.  Identification and characterisation of a developmentally regulated mammalian gene that utilises -1 programmed ribosomal frameshifting. , 2001, Nucleic acids research.

[42]  S. McKnight,et al.  NPAS2: An Analog of Clock Operative in the Mammalian Forebrain , 2001, Science.

[43]  F. Zindy,et al.  Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest , 1995, Cell.

[44]  J. F. Atkins,et al.  Autoregulatory frameshifting in decoding mammalian ornithine decarboxylase antizyme , 1995, Cell.

[45]  J. Hill,et al.  Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Influence of the structure of the 5' transcript leader on regulation by the upstream open reading frame. , 1993, The Journal of biological chemistry.

[46]  J. Hill,et al.  Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Dependence on translation and coding capacity of the cis-acting upstream open reading frame. , 1993, The Journal of biological chemistry.

[47]  J. Dahlberg,et al.  Molecular biology. , 1977, Science.