Minimization of the Bode sensitivity integral

In this paper we present two new results on Bode-type integrals. Firstly, we obtain, for a given scalar or multivariable continuous-time plant, the infimum of the Bode sensitivity integral which can be obtained with any stabilizing controller. The result involves the unstable plant poles and, perhaps surprisingly, a subset of the plant nonminimum phase zeros. Secondly, we obtain an apparently new expression for the Bode integral for the complementary sensitivity for a stable discrete-time scalar system.