States versus Rewards: Dissociable Neural Prediction Error Signals Underlying Model-Based and Model-Free Reinforcement Learning

[1]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .

[2]  N. Daw,et al.  Human Reinforcement Learning Subdivides Structured Action Spaces by Learning Effector-Specific Values , 2009, The Journal of Neuroscience.

[3]  J. Gläscher,et al.  Determining a role for ventromedial prefrontal cortex in encoding action-based value signals during reward-related decision making. , 2009, Cerebral cortex.

[4]  Jan Gläscher,et al.  Visualization of Group Inference Data in Functional Neuroimaging , 2009, Neuroinformatics.

[5]  M. Delgado,et al.  Regulating the expectation of reward via cognitive strategies , 2008, Nature Neuroscience.

[6]  C. Law,et al.  Neural correlates of perceptual learning in a sensory-motor, but not a sensory, cortical area , 2008, Nature Neuroscience.

[7]  Bettina Sorger,et al.  Novelty and target processing during an auditory novelty oddball: A simultaneous event-related potential and functional magnetic resonance imaging study , 2008, NeuroImage.

[8]  Samuel M. McClure,et al.  BOLD Responses Reflecting Dopaminergic Signals in the Human Ventral Tegmental Area , 2008, Science.

[9]  R. Andersen,et al.  Posterior Parietal Cortex Encodes Autonomously Selected Motor Plans , 2007, Neuron.

[10]  Timothy E. J. Behrens,et al.  Learning the value of information in an uncertain world , 2007, Nature Neuroscience.

[11]  B. Balleine,et al.  The Role of the Dorsal Striatum in Reward and Decision-Making , 2007, The Journal of Neuroscience.

[12]  K. Doya,et al.  Multiple Representations of Belief States and Action Values in Corticobasal Ganglia Loops , 2007, Annals of the New York Academy of Sciences.

[13]  Aaron R. Seitz,et al.  A common framework for perceptual learning , 2007, Current Opinion in Neurobiology.

[14]  E. Vaadia,et al.  Midbrain dopamine neurons encode decisions for future action , 2006, Nature Neuroscience.

[15]  P. Dayan,et al.  Cortical substrates for exploratory decisions in humans , 2006, Nature.

[16]  J. Tanji,et al.  Activity in the Lateral Prefrontal Cortex Reflects Multiple Steps of Future Events in Action Plans , 2006, Neuron.

[17]  M. Kawato,et al.  Different neural correlates of reward expectation and reward expectation error in the putamen and caudate nucleus during stimulus-action-reward association learning. , 2006, Journal of neurophysiology.

[18]  P. Dayan,et al.  Uncertainty-based competition between prefrontal and dorsolateral striatal systems for behavioral control , 2005, Nature Neuroscience.

[19]  P. Glimcher,et al.  Midbrain Dopamine Neurons Encode a Quantitative Reward Prediction Error Signal , 2005, Neuron.

[20]  Matthew T. Kaufman,et al.  Distributed Neural Representation of Expected Value , 2005, The Journal of Neuroscience.

[21]  Jesper Andersson,et al.  Valid conjunction inference with the minimum statistic , 2005, NeuroImage.

[22]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[23]  D. Barraclough,et al.  Reinforcement learning and decision making in monkeys during a competitive game. , 2004, Brain research. Cognitive brain research.

[24]  W. Newsome,et al.  Matching Behavior and the Representation of Value in the Parietal Cortex , 2004, Science.

[25]  Peter Dayan,et al.  Temporal difference models describe higher-order learning in humans , 2004, Nature.

[26]  D. Barraclough,et al.  Prefrontal cortex and decision making in a mixed-strategy game , 2004, Nature Neuroscience.

[27]  S. Haber The primate basal ganglia: parallel and integrative networks , 2003, Journal of Chemical Neuroanatomy.

[28]  R Turner,et al.  Optimized EPI for fMRI studies of the orbitofrontal cortex , 2003, NeuroImage.

[29]  Samuel M. McClure,et al.  Temporal Prediction Errors in a Passive Learning Task Activate Human Striatum , 2003, Neuron.

[30]  Karl J. Friston,et al.  Temporal Difference Models and Reward-Related Learning in the Human Brain , 2003, Neuron.

[31]  S. Yantis,et al.  Transient neural activity in human parietal cortex during spatial attention shifts , 2002, Nature Neuroscience.

[32]  J. Gold,et al.  Banburismus and the Brain Decoding the Relationship between Sensory Stimuli, Decisions, and Reward , 2002, Neuron.

[33]  Clay B. Holroyd,et al.  The neural basis of human error processing: reinforcement learning, dopamine, and the error-related negativity. , 2002, Psychological review.

[34]  H. Pashler STEVENS' HANDBOOK OF EXPERIMENTAL PSYCHOLOGY , 2002 .

[35]  Mitsuo Kawato,et al.  Multiple Model-Based Reinforcement Learning , 2002, Neural Computation.

[36]  J. M. Anderson,et al.  Responses of human frontal cortex to surprising events are predicted by formal associative learning theory , 2001, Nature Neuroscience.

[37]  Brian Knutson,et al.  Anticipation of Increasing Monetary Reward Selectively Recruits Nucleus Accumbens , 2001, The Journal of Neuroscience.

[38]  N. Logothetis,et al.  Neurophysiological investigation of the basis of the fMRI signal , 2001, Nature.

[39]  Anthony Dickinson,et al.  The 28th Bartlett Memorial Lecture. Causal learning: an associative analysis. , 2001 .

[40]  L. Nystrom,et al.  Tracking the hemodynamic responses to reward and punishment in the striatum. , 2000, Journal of neurophysiology.

[41]  J. Cohen,et al.  Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. , 2000, Science.

[42]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[43]  Kenji Doya,et al.  What are the computations of the cerebellum, the basal ganglia and the cerebral cortex? , 1999, Neural Networks.

[44]  Michael L. Platt,et al.  Neural correlates of decision variables in parietal cortex , 1999, Nature.

[45]  A. Friederici,et al.  The functional neuroanatomy of novelty processing: integrating ERP and fMRI results. , 1999, Cerebral cortex.

[46]  P. Holland,et al.  Removal of Cholinergic Input to Rat Posterior Parietal Cortex Disrupts Incremental Processing of Conditioned Stimuli , 1998, The Journal of Neuroscience.

[47]  Teck-Hua Ho,et al.  Experience-Weighted Attraction Learning in Coordination Games: Probability Rules, Heterogeneity, and Time-Variation. , 1998, Journal of mathematical psychology.

[48]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[49]  M. Fabiani,et al.  Changes in brain activity patterns in aging: the novelty oddball. , 1995, Psychophysiology.

[50]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[51]  J. Pearce,et al.  A model for Pavlovian learning: variations in the effectiveness of conditioned but not of unconditioned stimuli. , 1980, Psychological review.

[52]  E. Courchesne,et al.  Stimulus novelty, task relevance and the visual evoked potential in man. , 1975, Electroencephalography and clinical neurophysiology.

[53]  E. Tolman Cognitive maps in rats and men. , 1948, Psychological review.

[54]  E. Thorndike A PROOF OF THE LAW OF EFFECT. , 1933, Science.

[55]  C. H. Honzik,et al.  Degrees of hunger, reward and non-reward, and maze learning in rats, and Introduction and removal of reward, and maze performance in rats , 1930 .