On ordinal equivalence of power measures given by regular semivalues

Tomiyama [Tomiyama, Y., 1987. Simple game, voting representation and ordinal power equivalence. International Journal on Policy and Information 11, 67-75] proved that, for every weighted majority game, the preorderings induced by the classical Shapley-Shubik and Penrose-Banzhaf-Coleman indices coincide. He called this property the ordinal equivalence of these indices for weighted majority games. Diffo Lambo and Moulen [Diffo Lambo, L., Moulen, J., 2002. Ordinal equivalence of power notions in voting games. Theory and Decision 53, 313-325] extended Tomiyama's result to all linear (i.e. swap robust) simple games. Here we extend Diffo Lambo and Moulen's result to all the preorderings induced by regular semivalues (which include both classical indices) in a larger class of games that we call weakly linear simple games. We also provide a characterization of weakly linear games and use nonsymmetric transitive games to supplying examples of nonlinear but weakly linear games.

[1]  Martin Shubik,et al.  A Method for Evaluating the Distribution of Power in a Committee System , 1954, American Political Science Review.

[2]  Annick Laruelle,et al.  Power indices and the veil of ignorance , 2003, Int. J. Game Theory.

[3]  Philip Wolfe,et al.  Contributions to the theory of games , 1953 .

[4]  D. Felsenthal,et al.  Postulates and paradoxes of relative voting power — A critical re-appraisal , 1995 .

[5]  A. G. Kurosh,et al.  The theory of groups , 2014 .

[6]  Dan S. Felsenthal,et al.  The measurement of voting power , 1998 .

[7]  Donald G. Saari,et al.  Some Surprising Properties of Power Indices , 2001, Games Econ. Behav..

[8]  Guillermo Owen,et al.  Automorphisms and weighted values , 1997 .

[9]  Andrew Schotter,et al.  The inevitability of the “paradox of redistribution” in the allocation of voting weights , 1978 .

[10]  L. Penrose The Elementary Statistics of Majority Voting , 1946 .

[11]  A. Rapoport Game theory as a theory of conflict resolution , 1974 .

[12]  Joël Moulen,et al.  Ordinal equivalence of power notions in voting games , 2002 .

[13]  Francesc Carreras A characterization of Shapley index of power via automorphisms. , 1984 .

[14]  H.C.M. de Swart,et al.  Logic, Game Theory and Social Choice , 1999 .

[15]  S. Brams,et al.  Power and size: A new paradox , 1976 .

[16]  William S. Zwicker,et al.  Simple games - desirability relations, trading, pseudoweightings , 1999 .

[17]  G. Owen Multilinear extensions and the banzhaf value , 1975 .

[18]  Michio Suzuki Group Theory I , 1981 .

[19]  P. K. Pattanaik,et al.  Collective Choice and Social Welfare.@@@Voting and Collective Choice. , 1972 .

[20]  A. Laruelle,et al.  A critical reappraisal of some voting power paradoxes , 2005 .

[21]  Edward W. Packel,et al.  A new index of power for simplen-person games , 1978 .

[22]  Jane Friedman,et al.  Achievable Hierarchies In Voting Games , 2006 .

[23]  Josep Freixas,et al.  Semivalue Versatility and Applications , 2002, Ann. Oper. Res..

[24]  L. Shapley A Value for n-person Games , 1988 .

[25]  Andrew Schotter,et al.  Power Relationships in the International Monetary Fund: The Consequences of Quota Changes , 1980 .

[26]  Josep Freixas,et al.  Complete simple games , 1996 .

[27]  A. Rusinowska,et al.  Paradoxes of Voting Power in Dutch Politics , 2003 .

[28]  W. Scott,et al.  Group Theory. , 1964 .

[29]  Taylor Alan,et al.  Weighted Voting, Multicameral Representation, and Power , 1993 .

[30]  Steven J. Brams,et al.  New Paradoxes of Voting Power on the EC Council of Ministers , 1985 .

[31]  J. R. Isbell,et al.  A class of simple games , 1958 .

[32]  D. Pallaschke,et al.  Game Theory and Related Topics , 1980 .

[33]  Pradeep Dubey,et al.  Value Theory Without Efficiency , 1981, Math. Oper. Res..

[34]  Robert J. Weber,et al.  Subjectivity in the Valuation of Games , 1979 .

[35]  Robert J. Weber,et al.  Probabilistic Values for Games , 1977 .

[36]  L. Shapley,et al.  The Shapley Value , 1994 .

[37]  Josep Freixas,et al.  Semivalues as power indices , 2003, Eur. J. Oper. Res..

[38]  Guillermo Owen,et al.  Characterization of the Banzhaf–Coleman Index , 1978 .

[39]  D. Marc Kilgour A Shapley Value for Cooperative Games with Quarrelling , 1974 .

[40]  Annick Laruelle,et al.  Semivalues and Voting Power , 2003, IGTR.

[41]  Y. Tomiyama Simple game, voting representation and ordinal power equivalence , 1987 .