“Inverting” X-ray Absorption Spectra of Catalysts by Machine Learning in Search for Activity Descriptors

The rapid growth of methods emerging in the past decade for synthesis of “designer” catalysts—ranging from the size and shape-selected nanoparticles to mass-selected clusters, to precisely engineer...

[1]  C. W. Mays,et al.  On surface stress and surface tension: II. Determination of the surface stress of gold , 1968 .

[2]  S. P. Lloyd,et al.  Least squares quantization in PCM , 1982, IEEE Trans. Inf. Theory.

[3]  H. Shirakawa,et al.  Dopant Structure in FeCl3-doped Polyacetylene Studied by X-Ray Absorption Spectroscopy and X-Ray Photoelectron Spectroscopy , 1985 .

[4]  Alp,et al.  Structure of copper microclusters isolated in solid argon. , 1986, Physical Review Letters.

[5]  Hansen,et al.  Is there a contraction of the interatomic distance in small metal particles? , 1990, Physical review letters.

[6]  EXELFS analysis of amorphous and crystalline silicon carbide , 1991 .

[7]  Ma,et al.  Radial distribution function in x-ray-absorption fine structure. , 1992, Physical review. B, Condensed matter.

[8]  Frenkel,et al.  Thermal expansion and x-ray-absorption fine-structure cumulants. , 1993, Physical review. B, Condensed matter.

[9]  Jens K. Nørskov,et al.  A New Procedure for Particle Size Determination by EXAFS Based on Molecular Dynamics Simulations , 1993 .

[10]  Jens K. Nørskov,et al.  The Effect of Anharmonicity on the EXAFS Coordination Number in Small Metallic Particles , 1993 .

[11]  Jens K. Nørskov,et al.  Determination of metal particle sizes from EXAFS , 1994 .

[12]  Venkat Venkatasubramanian,et al.  Computer-aided molecular design using genetic algorithms , 1994 .

[13]  M. Fernández-García,et al.  XANES-TPR Study of Cu-Pd Bimetallic Catalysts: Application of Factor Analysis , 1995 .

[14]  Natoli,et al.  X-ray-absorption spectroscopy and n-body distribution functions in condensed matter. I. Theory. , 1995, Physical review. B, Condensed matter.

[15]  R. Tauler Multivariate curve resolution applied to second order data , 1995 .

[16]  E. Stern,et al.  Development of the EXELFS technique for high accuracy structural information , 1995 .

[17]  S. R. Wasserman The analysis of mixtures : Application of principal component analysis to XAS spectra , 1996 .

[18]  J. Rehr,et al.  Numerical Simulation of the Platinum LIII Edge White Line Relative to Nanometer Scale Clusters , 1997 .

[19]  A. Ankudinov,et al.  REAL-SPACE MULTIPLE-SCATTERING CALCULATION AND INTERPRETATION OF X-RAY-ABSORPTION NEAR-EDGE STRUCTURE , 1998 .

[20]  Pankaj K. Agarwal,et al.  Exact and Approximation Algortihms for Clustering , 1997 .

[21]  Eric L. Shirley,et al.  AB INITIO INCLUSION OF ELECTRON-HOLE ATTRACTION : APPLICATION TO X-RAY ABSORPTION AND RESONANT INELASTIC X-RAY SCATTERING , 1998 .

[22]  S. Wasserman,et al.  EXAFS and principal component analysis: a new shell game. , 1998, Journal of synchrotron radiation.

[23]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[24]  M Newville,et al.  A web-based library of XAFS data on model compounds. , 1999, Journal of synchrotron radiation.

[25]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[26]  J. Nørskov,et al.  Asymmetric pair distribution functions in catalysts , 2000 .

[27]  J. Wong,et al.  Quantitative speciation of Mn-bearing particulates emitted from Autos burning (methylcyclopentadienyl)manganese tricarbonyl-added gasolines using XANES spectroscopy , 2000 .

[28]  A. Frenkel,et al.  Phase speciation by extended x-ray absorption fine structure spectroscopy , 2002 .

[29]  John J. Rehr,et al.  Sensitivity of Pt x-ray absorption near edge structure to the morphology of small Pt clusters , 2002 .

[30]  A. Witkowska,et al.  Testing interaction models by using x-ray absorption spectroscopy: solid Pb , 2002 .

[31]  Theoretical Interpretation of XAFS and XANES in Pt Clusters , 2002 .

[32]  Venkat Venkatasubramanian,et al.  Catalyst design: knowledge extraction from high-throughput experimentation , 2003 .

[33]  T. Ressler Application of time-resolved in-situ X-ray absorption spectroscopy in solid-state chemistry , 2003, Analytical and bioanalytical chemistry.

[34]  Bert M. Weckhuysen,et al.  Operando spectroscopy: fundamental and technical aspects of spectroscopy of catalysts under working conditions , 2003 .

[35]  J. Meiler PROSHIFT: Protein chemical shift prediction using artificial neural networks , 2003, Journal of biomolecular NMR.

[36]  John J. Rehr,et al.  Limits and Advantages of X-ray Absorption Near Edge Structure for Nanometer Scale Metallic Clusters , 2003 .

[37]  J. Hanson,et al.  Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. , 2003, Journal of the American Chemical Society.

[38]  Venkat Venkatasubramanian,et al.  An Intelligent System for Reaction Kinetic Modeling and Catalyst Design , 2004 .

[39]  Stefan Vogt,et al.  Cluster analysis of soft X-ray spectromicroscopy data. , 2004 .

[40]  J. Hanson,et al.  Time-resolved Studies for the Mechanism of Reduction of Copper Oxides with Carbon Monoxide: Complex Behavior of Lattice Oxygen and the Formation of Suboxides , 2004 .

[41]  Matt Probert,et al.  First principles methods using CASTEP , 2005 .

[42]  A. Frenkel,et al.  Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles. , 2005, The Journal of chemical physics.

[43]  Wavelet analysis of extended x-ray absorption fine structure data , 2005 .

[44]  John J. Rehr,et al.  Progress in the theory and interpretation of XANES , 2005 .

[45]  John J. Rehr,et al.  Combined Bethe-Saltpeter equations and time-dependent density-functional theory approach for x-ray absorption calculations , 2005 .

[46]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[47]  Jörg Maser,et al.  Cluster analysis in soft X-ray spectromicroscopy : Finding the patterns in complex specimens , 2005 .

[48]  José M. Serra,et al.  Integrating high-throughput characterization into combinatorial heterogeneous catalysis: unsupervised construction of quantitative structure/property relationship models , 2005 .

[49]  Alfons Baiker,et al.  2D-mapping of the catalyst structure inside a catalytic microreactor at work: partial oxidation of methane over Rh/Al2O3. , 2006, The journal of physical chemistry. B.

[50]  D. E. Keller,et al.  Combining operando techniques in one spectroscopic-reaction cell: New opportunities for elucidating the active site and related reaction mechanism in catalysis , 2006 .

[51]  R. Nuzzo,et al.  Unusual non-bulk properties in nanoscale materials: thermal metal-metal bond contraction of gamma-alumina-supported Pt catalysts. , 2006, Journal of the American Chemical Society.

[52]  Wei Chu,et al.  Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. , 2007, Chemical reviews.

[53]  A. Dent,et al.  High throughput in situ XAFS screening of catalysts , 2007 .

[54]  A. Frenkel,et al.  Geometrical Characteristics of Regular Polyhedra: Application to EXAFS Studies of Nanoclusters , 2007 .

[55]  X. Gong,et al.  Atomic configurations of Pd atoms in PdAu(111) bimetallic surfaces investigated using the first-principles pseudopotential plane wave approach , 2007 .

[56]  Anatoly I. Frenkel,et al.  Solving the 3D structure of metal nanoparticles , 2007 .

[57]  A. Witkowska,et al.  Local ordering of nanostructured Pt probed by multiple-scattering XAFS , 2007 .

[58]  Simon J L Billinge,et al.  The Problem with Determining Atomic Structure at the Nanoscale , 2007, Science.

[59]  A. Bax,et al.  Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology , 2007, Journal of biomolecular NMR.

[60]  A Kuzmin,et al.  Zn K-edge XANES in nanocrystalline ZnO , 2007 .

[61]  R. Nuzzo,et al.  Dynamic structure in supported Pt nanoclusters: Real-time density functional theory and x-ray spectroscopy simulations , 2008 .

[62]  Jian-Min Zuo,et al.  Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction. , 2008, Nature materials.

[63]  Feng Tao,et al.  Reaction-Driven Restructuring of Rh-Pd and Pt-Pd Core-Shell Nanoparticles , 2008, Science.

[64]  J. Hanson,et al.  Solving the structure of reaction intermediates by time-resolved synchrotron x-ray absorption spectroscopy. , 2008, The Journal of chemical physics.

[65]  R. Evarestov,et al.  Quantum mechanics–molecular dynamics approach to the interpretation of x-ray absorption spectra , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[66]  Interpretation of EXAFS in ReO3 using molecular dynamics simulations , 2009 .

[67]  A. Frenkel,et al.  Synchrotron Studies of Catalysts: From XAFS to QEXAFS and Beyond , 2009 .

[68]  O. Bunău,et al.  Self-consistent aspects of x-ray absorption calculations , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[69]  Interpretation of EXAFS in ReO 3 using molecular dynamics simulations , 2009 .

[70]  R. Nuzzo,et al.  The emergence of nonbulk properties in supported metal clusters: negative thermal expansion and atomic disorder in Pt nanoclusters supported on gamma-Al2O3. , 2009, Journal of the American Chemical Society.

[71]  I. Tanaka,et al.  First-principles calculations of x-ray absorption near edge structure and energy loss near edge structure: present and future , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[72]  N. Russo,et al.  Atomic configurations of Pd atoms in PdAu(1 1 1) and PdAu(1 0 0) surface alloys: Ab initio density functional calculations , 2009 .

[73]  Janis Timoshenko,et al.  Wavelet data analysis of EXAFS spectra , 2009, Comput. Phys. Commun..

[74]  J. Timoshenko,et al.  Probing NiO nanocrystals by EXAFS spectroscopy , 2010 .

[75]  J. Rehr,et al.  Parameter-free calculations of X-ray spectra with FEFF9. , 2010, Physical chemistry chemical physics : PCCP.

[76]  Bertram Manz,et al.  Advanced imaging techniques for assessment of structure, composition and function in biofilm systems. , 2010, FEMS microbiology ecology.

[77]  E. Lotero,et al.  An activity and XANES study of Mn-promoted, Fe-based Fischer–Tropsch catalysts , 2010 .

[78]  Aaron Yevick,et al.  Effects of surface disorder on EXAFS modeling of metallic clusters , 2010 .

[79]  M. Fernández-García,et al.  Operando DRIFTS and XANES Study of Deactivating Effect of CO2 on a Ce0.8Cu0.2O2 CO-PROX Catalyst , 2010 .

[80]  F. D. de Groot,et al.  The CTM4XAS program for EELS and XAS spectral shape analysis of transition metal L edges. , 2010, Micron.

[81]  A. Frenkel,et al.  Shape-dependent catalytic properties of Pt nanoparticles. , 2010, Journal of the American Chemical Society.

[82]  P. Blaha,et al.  Understanding the L 2 , 3 x-ray absorption spectra of early 3 d transition elements , 2010 .

[83]  A. Frenkel,et al.  Anomalous lattice dynamics and thermal properties of supported size- and shape-selected Pt nanoparticles , 2010 .

[84]  Seung Min Kim,et al.  Metallic corner atoms in gold clusters supported on rutile are the dominant active site during water-gas shift catalysis. , 2010, Journal of the American Chemical Society.

[85]  J J Kas,et al.  Bethe-Salpeter equation calculations of core excitation spectra. , 2010, Physical review. B, Condensed matter and materials physics.

[86]  J. Timoshenko,et al.  Molecular dynamics simulations of EXAFS in germanium , 2011 .

[87]  J. Rehr,et al.  Comment on "Operando DRIFTS and XANES Study of Deactivating Effect of CO2 on a Ce0.8Cu0.2O2 CO-PROX Catalyst" , 2011 .

[88]  T. Rahman,et al.  Thermodynamic properties of Pt nanoparticles: Size, shape, support, and adsorbate effects , 2011 .

[89]  M. Bañares Operando Spectroscopy: the Knowledge Bridge to Assessing Structure–Performance Relationships in Catalyst Nanoparticles , 2011, Advanced materials.

[90]  A. Datye,et al.  In situ coarsening study of inverse micelle-prepared Pt nanoparticles supported on γ-Al2O3: pretreatment and environmental effects. , 2012, Physical chemistry chemical physics : PCCP.

[91]  Phillip A. Williams,et al.  TXM-Wizard: a program for advanced data collection and evaluation in full-field transmission X-ray microscopy , 2012, Journal of synchrotron radiation.

[92]  A. Kuzmin,et al.  Atomic structure relaxation in nanocrystalline NiO studied by EXAFS spectroscopy: Role of nickel vacancies , 2012 .

[93]  Abhisek Ukil,et al.  Neural Network-Based Active Learning in Multivariate Calibration , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[94]  J. Bokhoven,et al.  Structure of the methanol synthesis catalyst determined by in situ HERFD XAS and EXAFS , 2012 .

[95]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[96]  A. Frenkel Applications of extended X-ray absorption fine-structure spectroscopy to studies of bimetallic nanoparticle catalysts. , 2012, Chemical Society reviews.

[97]  A. Frenkel,et al.  Thermochromism in polydiacetylene-metal oxide nanocomposites , 2012 .

[98]  Christopher B. Murray,et al.  Control of Metal Nanocrystal Size Reveals Metal-Support Interface Role for Ceria Catalysts , 2013, Science.

[99]  Applications of Extended X‐Ray Absorption Fine‐Structure Spectroscopy to Studies of Bimetallic Nanoparticle Catalysts , 2013 .

[100]  Rafal E. Dunin-Borkowski,et al.  Imaging Catalysts at Work: A Hierarchical Approach from the Macro‐ to the Meso‐ and Nano‐scale , 2013 .

[101]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[102]  Carlo Lamberti,et al.  Reactivity of surface species in heterogeneous catalysts probed by in situ X-ray absorption techniques. , 2013, Chemical reviews.

[103]  C. Ruckebusch,et al.  Multivariate curve resolution: a review of advanced and tailored applications and challenges. , 2013, Analytica chimica acta.

[104]  Guoying Chen,et al.  Mesoscale phase distribution in single particles of LiFePO4 following lithium deintercalation. , 2013, Chemistry of materials : a publication of the American Chemical Society.

[105]  G. Henkelman,et al.  A theoretical and experimental examination of systematic ligand-induced disorder in Au dendrimer-encapsulated nanoparticles , 2013 .

[106]  M. Marcus,et al.  Estimating the number of pure chemical components in a mixture by X-ray absorption spectroscopy. , 2014, Journal of synchrotron radiation.

[107]  G T Seidler,et al.  A laboratory-based hard x-ray monochromator for high-resolution x-ray emission spectroscopy and x-ray absorption near edge structure measurements. , 2014, The Review of scientific instruments.

[108]  A. Urakawa,et al.  Multivariate curve resolution applied to in situ X-ray absorption spectroscopy data: an efficient tool for data processing and analysis. , 2014, Analytica chimica acta.

[109]  R. Ramprasad,et al.  Machine Learning in Materials Science , 2016 .

[110]  A. Frenkel,et al.  Study of the local structure and oxidation state of iron in complex oxide catalysts for propylene ammoxidation , 2014 .

[111]  M. Hodson,et al.  Combining µXANES and µXRD mapping to analyse the heterogeneity in calcium carbonate granules excreted by the earthworm Lumbricus terrestris , 2013, Journal of synchrotron radiation.

[112]  Peter Strasser,et al.  Particle size effects in the catalytic electroreduction of CO₂ on Cu nanoparticles. , 2014, Journal of the American Chemical Society.

[113]  Chris Jacobsen,et al.  MANTiS: a program for the analysis of X-ray spectromicroscopy data. , 2014, Journal of synchrotron radiation.

[114]  J. Timoshenko,et al.  EXAFS study of hydrogen intercalation into ReO 3 using the evolutionary algorithm , 2014, Journal of physics. Condensed matter : an Institute of Physics journal.

[115]  J. Timoshenko,et al.  Temperature dependence of the local structure and lattice dynamics of wurtzite-type ZnO , 2014 .

[116]  Alexei Kuzmin,et al.  EXAFS and XANES analysis of oxides at the nanoscale , 2014, IUCrJ.

[117]  C. Santilli,et al.  Multivariate curve resolution analysis applied to time-resolved synchrotron X-ray Absorption Spectroscopy monitoring of the activation of copper alumina catalyst , 2014 .

[118]  Zheng Zhai,et al.  Band-gap energy as a descriptor of catalytic activity for propene oxidation over mixed metal oxide catalysts. , 2014, Journal of the American Chemical Society.

[119]  R. Naik,et al.  Atomic-scale identification of Pd leaching in nanoparticle catalyzed C–C coupling: effects of particle surface disorder† †Electronic supplementary information (ESI) available: Materials and methods, UV-vis spectra, raw EXAFS data, and computational methods. See DOI: 10.1039/c5sc01424g , 2015, Chemical science.

[120]  C. Meneghini,et al.  A Close Look into the Low Energy Region of the XAS Spectra: The XANES Region , 2015 .

[121]  G. Henkelman,et al.  Probing the Limits of Conventional Extended X-ray Absorption Fine Structure Analysis Using Thiolated Gold Nanoparticles. , 2015, ACS nano.

[122]  Anubhav Jain,et al.  The Materials Application Programming Interface (API): A simple, flexible and efficient API for materials data based on REpresentational State Transfer (REST) principles , 2015 .

[123]  L. Gaberová,et al.  Speciation of Ruthenium as a Reduction Promoter of Silica-Supported Co Catalysts: A Time-Resolved in Situ XAS Investigation , 2015 .

[124]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[125]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[126]  A. Beale,et al.  Chemical imaging of single catalyst particles with scanning μ-XANES-CT and μ-XRF-CT. , 2015, Physical chemistry chemical physics : PCCP.

[127]  Š. Vajda,et al.  Catalysis Applications of Size-Selected Cluster Deposition , 2015 .

[128]  B. Wiley,et al.  On the road to metallic nanoparticles by rational design: bridging the gap between atomic-level theoretical modeling and reality by total scattering experiments. , 2015, Nanoscale.

[129]  Paul A. Midgley,et al.  Multicomponent Signal Unmixing from Nanoheterostructures: Overcoming the Traditional Challenges of Nanoscale X-ray Analysis via Machine Learning , 2015, Nano letters.

[130]  The Use of X-ray Absorption Spectra for Validation of Classical Force-Field Models , 2016 .

[131]  D. Koziej,et al.  Matching the organic and inorganic counterparts during nucleation and growth of copper-based nanoparticles – in situ spectroscopic studies , 2015 .

[132]  Romà Tauler,et al.  MCR-ALS GUI 2.0: New features and applications , 2015 .

[133]  V. Briois,et al.  Influence of the Preparation Conditions of Oxidic NiMo/Al2O3 Catalysts on the Sulfidation Ability: A Quick-XAS and Raman Spectroscopic Study , 2015 .

[134]  Philip A. Ewels,et al.  A Complete Overhaul of the Electron Energy-Loss Spectroscopy and X-Ray Absorption Spectroscopy Database: eelsdb.eu , 2016, Microscopy and Microanalysis.

[135]  Automated analysis of XANES: A feasibility study of Au reference compounds , 2016 .

[136]  J. Timoshenko,et al.  Temperature-dependent EXAFS study of the local structure and lattice dynamics in cubic Y₂O₃. , 2016, Journal of synchrotron radiation.

[137]  Tim Mueller,et al.  Machine Learning in Materials Science , 2016 .

[138]  S. Ermon,et al.  Unsupervised Data Mining in nanoscale X-ray Spectro-Microscopic Study of NdFeB Magnet , 2016, Scientific Reports.

[139]  Chris J Pickard,et al.  Ab Initio Quality NMR Parameters in Solid-State Materials Using a High-Dimensional Neural-Network Representation. , 2016, Journal of chemical theory and computation.

[140]  Janis Timoshenko,et al.  Solving local structure around dopants in metal nanoparticles with ab initio modeling of X-ray absorption near edge structure. , 2016, Physical chemistry chemical physics : PCCP.

[141]  C. Lamberti,et al.  Ligands Make the Difference! Molecular Insights into CrVI/SiO2 Phillips Catalyst during Ethylene Polymerization. , 2017, Journal of the American Chemical Society.

[142]  Stephen Jesse,et al.  Automated Interpretation and Extraction of Topographic Information from Time of Flight Secondary Ion Mass Spectrometry Data , 2017, Scientific Reports.

[143]  D. Lu,et al.  Supervised Machine-Learning-Based Determination of Three-Dimensional Structure of Metallic Nanoparticles. , 2017, The journal of physical chemistry letters.

[144]  E. Borfecchia,et al.  Composition-driven Cu-speciation and reducibility in Cu-CHA zeolite catalysts: a multivariate XAS/FTIR approach to complexity , 2017, Chemical science.

[145]  Rama Vasudevan,et al.  Deep Learning of Atomically Resolved Scanning Transmission Electron Microscopy Images: Chemical Identification and Tracking Local Transformations. , 2017, ACS nano.

[146]  A. Frenkel,et al.  Probing structural relaxation in nanosized catalysts by combining EXAFS and reverse Monte Carlo methods , 2017 .

[147]  J. Bokhoven,et al.  In situ formation of hydrides and carbides in palladium catalyst: When XANES is better than EXAFS and XRD , 2017 .

[148]  Franciszek Krok,et al.  Retrieving the Quantitative Chemical Information at Nanoscale from Scanning Electron Microscope Energy Dispersive X-ray Measurements by Machine Learning. , 2017, Nano letters.

[149]  L. Curtiss,et al.  Copper Cluster Size Effect in Methanol Synthesis from CO2 , 2017 .

[150]  M. Di Michiel,et al.  X-ray physico-chemical imaging during activation of cobalt-based Fischer–Tropsch synthesis catalysts , 2017, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[151]  Ichiro Takeuchi,et al.  Comparison of dissimilarity measures for cluster analysis of X-ray diffraction data from combinatorial libraries , 2017, npj Computational Materials.

[152]  Colin F. Dickens,et al.  Combining theory and experiment in electrocatalysis: Insights into materials design , 2017, Science.

[153]  R. Nuzzo,et al.  Anomalous Structural Disorder in Supported Pt Nanoparticles. , 2017, The journal of physical chemistry letters.

[154]  A. Frenkel,et al.  Determination of bimetallic architectures in nanometer-scale catalysts by combining molecular dynamics simulations with x-ray absorption spectroscopy. , 2017, The Journal of chemical physics.

[155]  Ulrike Krewer,et al.  Future Challenges in Heterogeneous Catalysis: Understanding Catalysts under Dynamic Reaction Conditions , 2016, ChemCatChem.

[156]  David Prendergast,et al.  Accurate X-Ray Spectral Predictions: An Advanced Self-Consistent-Field Approach Inspired by Many-Body Perturbation Theory. , 2016, Physical review letters.

[157]  Anders Holmen,et al.  Evaluation of Reoxidation Thresholds for γ-Al2O3-Supported Cobalt Catalysts under Fischer-Tropsch Synthesis Conditions. , 2017, Journal of the American Chemical Society.

[158]  K. Tsuda,et al.  Data-driven approach for the prediction and interpretation of core-electron loss spectroscopy , 2018, Scientific Reports.

[159]  Cluster Assemblies Produced by Aggregation of Preformed Ag Clusters in Ionic Liquids. , 2018, Langmuir : the ACS journal of surfaces and colloids.

[160]  M. Fernández-García,et al.  Phase-Contact Engineering in Mono- and Bimetallic Cu-Ni Co-catalysts for Hydrogen Photocatalytic Materials. , 2018, Angewandte Chemie.

[161]  Stefano Curtarolo,et al.  SISSO: A compressed-sensing method for identifying the best low-dimensional descriptor in an immensity of offered candidates , 2017, Physical Review Materials.

[162]  E. Borfecchia,et al.  Determining Cu–Speciation in the Cu–CHA Zeolite Catalyst: The Potential of Multivariate Curve Resolution Analysis of In Situ XAS Data , 2018, Topics in Catalysis.

[163]  A. Frenkel,et al.  Subnanometer Substructures in Nanoassemblies Formed from Clusters under a Reactive Atmosphere Revealed Using Machine Learning , 2018, The Journal of Physical Chemistry C.

[164]  N. K. Sahoo,et al.  In Situ XAS Study on Growth of PVP-Stabilized Cu Nanoparticles , 2018, ChemistrySelect.

[165]  Hanmei Tang,et al.  Automated generation and ensemble-learned matching of X-ray absorption spectra , 2017, npj Computational Materials.

[166]  J. Bokhoven,et al.  A Perspective on Counting Catalytic Active Sites and Rates of Reaction Using X-Ray Spectroscopy , 2018, Topics in Catalysis.

[167]  Amanda S. Barnard,et al.  Representing molecular and materials data for unsupervised machine learning , 2018 .

[168]  L. Curtiss,et al.  Perspective: Size selected clusters for catalysis and electrochemistry. , 2018, The Journal of chemical physics.

[169]  U. Waghmare,et al.  Structural and Electronic Descriptors of Catalytic Activity of Graphene-Based Materials: First-Principles Theoretical Analysis. , 2018, Small.

[170]  Chi Chen,et al.  High-throughput computational X-ray absorption spectroscopy , 2018, Scientific Data.

[171]  Dimitrios K. Pappas,et al.  The Nuclearity of the Active Site for Methane to Methanol Conversion in Cu-Mordenite: A Quantitative Assessment. , 2018, Journal of the American Chemical Society.

[172]  V. Venkatasubramanian The promise of artificial intelligence in chemical engineering: Is it here, finally? , 2018, AIChE Journal.

[173]  Daniel W. Davies,et al.  Machine learning for molecular and materials science , 2018, Nature.

[174]  Hideitsu Hino,et al.  Adaptive design of an X-ray magnetic circular dichroism spectroscopy experiment with Gaussian process modelling , 2018, npj Computational Materials.

[175]  Andrew J. Medford,et al.  Extracting Knowledge from Data through Catalysis Informatics , 2018, ACS Catalysis.

[176]  H. Hino,et al.  Extraction of Physical Parameters from X-ray Spectromicroscopy Data Using Machine Learning , 2018, Microscopy and Microanalysis.

[177]  G. Henkelman,et al.  Structural characterization of heterogeneous RhAu nanoparticles from a microwave-assisted synthesis. , 2018, Nanoscale.

[178]  John R. Kitchin,et al.  Machine learning in catalysis , 2018, Nature Catalysis.

[179]  Do Heui Kim,et al.  Effects of Molecular and Electronic Structures in CoOx/CeO2 Catalysts on NO Reduction by CO , 2019, The Journal of Physical Chemistry C.

[180]  Joanna Aizenberg,et al.  Probing Atomic Distributions in Mono- and Bimetallic Nanoparticles by Supervised Machine Learning. , 2018, Nano letters.

[181]  Richard A. Martin,et al.  Improving our understanding of metal implant failures: Multiscale chemical imaging of exogenous metals in ex-vivo biological tissues. , 2019, Acta biomaterialia.

[182]  G. Henkelman,et al.  Solving the Structure and Dynamics of Metal Nanoparticles by Combining X-Ray Absorption Fine Structure Spectroscopy and Atomistic Structure Simulations. , 2019, Annual review of analytical chemistry.

[183]  H. Hino,et al.  Automated estimation of materials parameter from X-ray absorption and electron energy-loss spectra with similarity measures , 2019, npj Computational Materials.

[184]  Itsuki Miyazato,et al.  Automatic oxidation threshold recognition of XAFS data using supervised machine learning , 2019, Molecular Systems Design & Engineering.

[185]  J. Timoshenko,et al.  Is There a Negative Thermal Expansion in Supported Metal Nanoparticles? An in Situ X-ray Absorption Study Coupled with Neural Network Analysis , 2019, The Journal of Physical Chemistry C.

[186]  E. Borfecchia,et al.  Quantitative structural determination of active sites from in situ and operando XANES spectra: From standard ab initio simulations to chemometric and machine learning approaches , 2019, Catalysis Today.

[187]  P. Bagot,et al.  Bimetallic Fe-Ni/SiO2 catalysts for furfural hydrogenation: Identification of the interplay between Fe and Ni during deposition-precipitation and thermal treatments , 2019, Catalysis Today.

[188]  J. Timoshenko,et al.  Tuning the Structure of Pt Nanoparticles through Support Interactions: An in Situ Polarized X-ray Absorption Study Coupled with Atomistic Simulations , 2019, The journal of physical chemistry. C, Nanomaterials and interfaces.

[189]  D. Shapiro,et al.  Probing the Location and Speciation of Elements in Zeolites with Correlated Atom Probe Tomography and Scanning Transmission X‐Ray Microscopy , 2018, ChemCatChem.

[190]  Tej S. Choksi,et al.  Predicting Adsorption Properties of Catalytic Descriptors on Bimetallic Nanoalloys with Site-Specific Precision. , 2019, The journal of physical chemistry letters.

[191]  T. Mizoguchi,et al.  Quantitative estimation of properties from core-loss spectrum via neural network , 2019, Journal of Physics: Materials.

[192]  Shinjae Yoo,et al.  Classification of local chemical environments from x-ray absorption spectra using supervised machine learning , 2019, Physical Review Materials.

[193]  C. Lamberti,et al.  Machine learning approaches to XANES spectra for quantitative 3D structural determination: The case of CO2 adsorption on CPO-27-Ni MOF , 2020 .

[194]  J. Timoshenko,et al.  Treatment of disorder effects in X-ray absorption spectra beyond the conventional approach , 2020, 2002.10406.

[195]  C. Santilli,et al.  Activation of Mo and V oxides supported on ZSM-5 zeolite catalysts followed by in situ XAS and XRD and their uses in oxydehydration of glycerol , 2020 .

[196]  A. Frenkel,et al.  Silver clusters shape determination from in-situ XANES data , 2020, Radiation Physics and Chemistry.