Variational discretizations for the generalized Rosenau-type equations

The generalized Rosenau-type equations include the Rosenau-RLW equation and the Rosenau-KdV equation, which both admit the third-order Lagrangians. In the Lagrangian framework, this paper presents the variational formulations of the generalized Rosenau-type equations as well as their multisymplectic structures. Based on the discrete variational principle, we construct the variational discretizations for solving the evolutions of solitary solutions of this class of equations. We simulate the motion of the single solitary wave, and also observe the different kind of collisions for the generalized Rosenau-type equations with various coefficients.

[1]  Gaurav S. Sukhatme,et al.  Geometric discretization of nonholonomic systems with symmetries , 2009 .

[2]  Jin-Ming Zuo,et al.  A New Conservative Difference Scheme for the General Rosenau-RLW Equation , 2010 .

[3]  Steve Shkoller,et al.  A variational approach to second-order multisymplectic field theory , 2000 .

[4]  Taeyoung Lee,et al.  Attitude maneuvers of a rigid spacecraft in a circular orbit , 2006, 2006 American Control Conference.

[5]  Jerrold E. Marsden,et al.  Nonintrusive and Structure Preserving Multiscale Integration of Stiff ODEs, SDEs, and Hamiltonian Systems with Hidden Slow Dynamics via Flow Averaging , 2009, Multiscale Model. Simul..

[6]  J. Marsden,et al.  DISCRETE MECHANICS AND OPTIMAL CONTROL: AN ANALYSIS ∗ , 2008, 0810.1386.

[7]  J. Marsden,et al.  Variational integrators for constrained dynamical systems , 2008 .

[8]  Luming Zhang,et al.  On the convergence of a conservative numerical scheme for the usual Rosenau-RLW equation , 2012 .

[9]  Philip Rosenau,et al.  Dynamics of Dense Discrete Systems High Order Effects , 1988 .

[10]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[11]  Jun Zhou,et al.  An Average Linear Difference Scheme for the Generalized Rosenau-KdV Equation , 2014, J. Appl. Math..

[12]  Steve Shkoller,et al.  Second-order multisymplectic field theory: A variational approach to second-order multisymplectic , 1999 .

[13]  S. M. Choo,et al.  A discontinuous Galerkin method for the Rosenau equation , 2008 .

[14]  Luming Zhang,et al.  Numerical Simulation for General Rosenau-RLW Equation: AnAverage Linearized Conservative Scheme , 2012 .

[15]  D. Peregrine Long waves on a beach , 1967, Journal of Fluid Mechanics.

[16]  Youcai Xu,et al.  Conservative Linear Difference Scheme for Rosenau-KdV Equation , 2013 .

[17]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[18]  M. Qin,et al.  A multisymplectic variational integrator for the nonlinear Schrödinger equation , 2002 .

[19]  A. Feinstein,et al.  Variational Methods for the Study of Nonlinear Operators , 1966 .

[20]  M. Qin,et al.  Multisymplectic geometry and multisymplectic Preissmann scheme for the KdV equation , 2000 .

[21]  Emmy Noether,et al.  Invariant Variation Problems , 2005, physics/0503066.

[22]  Philip Rosenau,et al.  A Quasi-Continuous Description of a Nonlinear Transmission Line , 1986 .

[23]  A. Jamiołkowski Book reviewApplications of Lie groups to differential equations : Peter J. Olver (School of Mathematics, University of Minnesota, Minneapolis, U.S.A): Graduate Texts in Mathematics, Springer-Verlag, New York, Berlin, Heidelberg, Tokyo, 1986, XXVI+497pp. , 1989 .

[24]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[25]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[26]  Luming Zhang,et al.  Finite difference discretization of the Rosenau-RLW equation , 2013 .

[27]  J. Bona,et al.  Model equations for long waves in nonlinear dispersive systems , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[28]  Meng-zhaoQin,et al.  A MULTI-SYMPLECTIC SCHEME FOR RLW EQUATION , 2004 .

[29]  Jerrold E. Marsden,et al.  Variational Integrators for Maxwell's Equations with Sources , 2008, 0803.2070.