Sub-pixel distance maps and weighted distance transforms

A new framework for computing the Euclidean distance and weighted distance from the boundary of a given digitized shape is presented. The distance is calculated with sub-pixel accuracy. The algorithm is based on a equal distance contour evolution process. The moving contour is embedded as a level set in a time varying function of higher dimension. This representation of the evolving contour makes possible the use of an accurate and stable numerical scheme, due to Osher and Sethian [22]. The relation between the classical shape from shading problem and the weighted distance transform is presented, as well as an algorithm that calculates the geodesic distance transform on surfaces.

[1]  Alfred M. Bruckstein,et al.  DigiDürer — a digital engraving system , 1993, The Visual Computer.

[2]  Petros Maragos,et al.  Evolution equations for continuous-scale morphology , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[3]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[4]  Alex Pentland,et al.  Local Shading Analysis , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[5]  Luc Vincent,et al.  Exact Euclidean distance function by chain propagations , 1991, Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[6]  J. Sethian Curvature and the evolution of fronts , 1985 .

[7]  P. Lions,et al.  Shape-from-shading, viscosity solutions and edges , 1993 .

[8]  Katsushi Ikeuchi,et al.  Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..

[9]  S. Osher,et al.  A level set approach for computing solutions to incompressible two-phase flow , 1994 .

[10]  Alfred M. Bruckstein,et al.  Finding Shortest Paths on Surfaces Using Level Sets Propagation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Guillermo Sapiro,et al.  Implementing continuous-scale morphology via curve evolution , 1993, Pattern Recognit..

[12]  S. Osher,et al.  High-order essentially nonsocillatory schemes for Hamilton-Jacobi equations , 1990 .

[13]  Wang Hai-bing,et al.  High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations , 2006 .

[14]  P. Dupuis,et al.  Direct method for reconstructing shape from shading , 1991, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Alfred M. Bruckstein,et al.  Shape From Shading , 2006, Handbook of Mathematical Models in Computer Vision.

[16]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[17]  Alfred M. Bruckstein,et al.  Shape offsets via level sets , 1993, Comput. Aided Des..

[18]  Berthold K. P. Horn,et al.  Shape from shading , 1989 .

[19]  P. Danielsson Euclidean distance mapping , 1980 .

[20]  R. LeVeque Numerical methods for conservation laws , 1990 .

[21]  Guillermo Sapiro,et al.  Affine invariant scale-space , 1993, International Journal of Computer Vision.

[22]  Frederic Fol Leymarie,et al.  Fast raster scan distance propagation on the discrete rectangular lattice , 1992, CVGIP Image Underst..

[23]  Alfred M. Bruckstein,et al.  A new method for image segmentation , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[24]  Berthold K. P. Horn Height and gradient from shading , 1989, International Journal of Computer Vision.

[25]  W. E. Hartnett,et al.  Shape Recognition, Prairie Fires, Convex Deficiencies and Skeletons , 1968 .

[26]  Alex Pentland,et al.  A simple algorithm for shape from shading , 1992, Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[27]  H. Blum Biological shape and visual science (part I) , 1973 .

[28]  Piet W. Verbeek,et al.  Shading from shape, the eikonal equation solved by grey-weighted distance transform , 1990, Pattern Recognit. Lett..

[29]  Alex Pentland Linear shape from shading , 2004, International Journal of Computer Vision.

[30]  David W. Payton,et al.  Planning and reasoning for autonomous vehicle control , 1987 .

[31]  Alfred M. Bruckstein,et al.  Subpixel distance maps and weighted distance transforms , 1993, Optics & Photonics.