Model-Free Optimal Control using SPSA with Complex Variables

[1]  Woon-Seng Gan,et al.  Rapid Communication On the use of an SPSA-based model-free feedback controller in active noise control for periodic disturbances in a duct , 2008 .

[2]  J. Spall,et al.  Model-free control of nonlinear stochastic systems with discrete-time measurements , 1998, IEEE Trans. Autom. Control..

[3]  George Trapp,et al.  Using Complex Variables to Estimate Derivatives of Real Functions , 1998, SIAM Rev..

[4]  Bengt Fornberg,et al.  Numerical Differentiation of Analytic Functions , 1981, TOMS.

[5]  Hong Chen,et al.  Universal approximation to nonlinear operators by neural networks with arbitrary activation functions and its application to dynamical systems , 1995, IEEE Trans. Neural Networks.

[6]  F. Girosi,et al.  Networks for approximation and learning , 1990, Proc. IEEE.

[7]  Shun-ichi Azuma,et al.  Performance analysis of model-free PID tuning of MIMO systems based on simultaneous perturbation stochastic approximation , 2014, Expert Syst. Appl..

[8]  James C. Spall,et al.  A one-measurement form of simultaneous perturbation stochastic approximation , 1997, Autom..

[9]  A Orman,et al.  Optimization of Stochastic Models: The Interface Between Simulation and Optimization , 2012, J. Oper. Res. Soc..

[10]  Ding-Xuan Zhou,et al.  Universality of Deep Convolutional Neural Networks , 2018, Applied and Computational Harmonic Analysis.

[11]  Engin Yaz,et al.  A control scheme for a class of discrete nonlinear stochastic systems , 1987 .

[12]  Huai-Ning Wu,et al.  Policy Gradient Adaptive Dynamic Programming for Data-Based Optimal Control , 2017, IEEE Transactions on Cybernetics.

[13]  Anastasios Xepapadeas,et al.  Modeling Complex Systems , 2010 .

[14]  S. Mitter,et al.  The conjugate gradient method for optimal control problems , 1967 .

[15]  J. Blum Multidimensional Stochastic Approximation Methods , 1954 .

[16]  James C. Spall,et al.  Improved SPSA Using Complex Variables with Applications in Optimal Control Problems , 2021, 2021 American Control Conference (ACC).

[17]  James J. Buckley,et al.  Universal fuzzy controllers , 1992, Autom..

[18]  QingHui Yuan A model free automatic tuning method for a restricted structured controller by using Simultaneous Perturbation Stochastic Approximation (SPSA) , 2008, 2008 American Control Conference.

[19]  D.A. Handelman,et al.  Theory and development of higher-order CMAC neural networks , 1992, IEEE Control Systems.

[20]  Joaquim R. R. A. Martins,et al.  THE CONNECTION BETWEEN THE COMPLEX-STEP DERIVATIVE APPROXIMATION AND ALGORITHMIC DIFFERENTIATION , 2001 .

[21]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[22]  J. Kiefer,et al.  Stochastic Estimation of the Maximum of a Regression Function , 1952 .

[23]  J. Spall Multivariate stochastic approximation using a simultaneous perturbation gradient approximation , 1992 .

[24]  Irena Stojkovska,et al.  Complex-step derivative approximation in noisy environment , 2018, J. Comput. Appl. Math..

[25]  Kurt Hornik,et al.  Multilayer feedforward networks are universal approximators , 1989, Neural Networks.

[26]  E. H. Mamdani,et al.  Advances in the linguistic synthesis of fuzzy controllers , 1976 .

[27]  Joaquim R. R. A. Martins,et al.  The complex-step derivative approximation , 2003, TOMS.

[28]  Timo O. Reiss,et al.  Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms. , 2005, Journal of magnetic resonance.