Convergence of Bayesian learning to general equilibrium in mis-specified models

[1]  J. Doob Stochastic processes , 1953 .

[2]  M. Abramovitz The Allocation of Economic Resources , 1959 .

[3]  A. Kirman Learning by Firms about Demand Conditions , 1975 .

[4]  L. Blume,et al.  Learning to be rational , 1982 .

[5]  F. Fisher Disequilibrium Foundations of Equilibrium Economics , 1984 .

[6]  Jerry R. Green,et al.  Individual forecasting and aggregate outcomes: On mistaken beliefs and resultant equilibria , 1984 .

[7]  L. Blume,et al.  Rational expectations equilibrium: An alternative approach , 1984 .

[8]  M. Bray,et al.  Rational Expectations Equilibria, Learning, and Model Specification , 1986 .

[9]  G. R. Feiwel Arrow and the ascent of modern economic theory , 1987 .

[10]  David M. Kreps,et al.  Rational Learning and Rational Expectations , 1987 .

[11]  Frank Hahn,et al.  Information, Dynamics and Equilibrium , 1987 .

[12]  N. Kiefer,et al.  Controlling a Stochastic Process with Unknown Parameters , 1988 .

[13]  N. Kiefer,et al.  Optimal Control of an Unknown Linear Process with Learning , 1989 .

[14]  F. Hahn The Economics of missing markets, information, and games , 1990 .

[15]  Yaw Nyarko,et al.  Learning In Mis-Specified Models And The Possibility Of Cycles , 1991 .

[16]  E. Kalai,et al.  Subjective Games and Equilibria , 1993 .

[17]  E. Kalai,et al.  Rational Learning Leads to Nash Equilibrium , 1993 .

[18]  Mark Salmon,et al.  Learning and Rationality in Economics , 1995 .

[19]  M. Schinkel Disequilibrium Theory : reflections towards a revival of learning , 2001 .