Exploring the Morphotropic Phase Boundary in Epitaxial PbHf 1 − x Ti x O 3 Thin Films

: Epitaxial PbHf 1 − x Ti x O 3 /SrTiO 3 (001) thin-film heterostructures are studied for a potential morphotropic phase boundary (MPB) akin to that in the PbZr 1 − x Ti x O 3 system. End members, PbHfO 3 and PbTiO 3 , were found to possess orthorhombic ( Pbam ) and tetragonal ( P 4 mm ) crystal structures and antiferroelectric and ferroelectric ( ∼ 87 μ C/cm 2 ) behavior, respectively. PbHf 0.75 Ti 0.25 O 3 and PbHf 0.25 Ti 0.75 O 3 solid solutions were both found to be ferroelectric with rhombohedral ( R 3 c , ∼ 22 μ C/cm 2 ) and tetragonal ( P 4 mm , ∼ 46 μ C/ cm 2 ) structures, respectively. For intermediate PbHf 1 − x Ti x O 3 compositions (e.g., x = 0.4, 0.45, 0.5, and 0.55), a structural transition was observed from rhombohedral (hafnium-rich) to tetragonal (titanium-rich) phases. These intermediate compositions also exhibited mixed-phase structures including R 3 c , monoclinic ( Cm ), and P 4 mm symmetries and, in all cases, were ferroelectric with remanent (5 − 22 μ C/cm 2 ) and saturation (18.5 − 36 μ C/cm 2 ) polarization and coercive field (24 − 34.5 kV/cm) values increasing with x . While the dielectric constant was the largest for PbHf 0.6 Ti 0.4 O 3 , the MPB is thought to be near x = 0.5 after separation of the intrinsic and extrinsic contributions to the dielectric response. Furthermore, piezoelectric displacement − voltage hysteresis loops were obtained for all chemistries revealing displacement values as good as PbZr 0.52 Ti 0.48 O 3 films in the same geometry. Thereby, the PbHf 1 − x Ti x O 3 system is a viable alternative to the PbZr 1 − x Ti x O 3 system offering comparable performance.

[1]  K. Persson,et al.  Exploring the Pb1−xSrxHfO3 System and Potential for High Capacitive Energy Storage Density and Efficiency , 2021, Advanced materials.

[2]  Z. Ye,et al.  Ferroelectric phase-transition frustration near a tricritical composition point , 2021, Nature Communications.

[3]  J. Pulskamp,et al.  Growth of thin film ferroelectric PZT, PHT, and antiferroelectric PHO from atomic layer deposition precursors , 2020 .

[4]  C. Hu,et al.  Enhanced ferroelectricity in ultrathin films grown directly on silicon , 2020, Nature.

[5]  G. Ceder,et al.  Understanding interface stability in solid-state batteries , 2019, Nature Reviews Materials.

[6]  Joshua D. Wilbur,et al.  Quantifying Intrinsic, Extrinsic, Dielectric, and Secondary Pyroelectric Responses in PbZr1-xTixO3 Thin Films. , 2019, ACS applied materials & interfaces.

[7]  P. Nukala,et al.  Direct Epitaxial Growth of Polar (1 – x)HfO2–(x)ZrO2 Ultrathin Films on Silicon , 2019, ACS applied electronic materials.

[8]  Yan Wang,et al.  Computational Screening of Cathode Coatings for Solid-State Batteries , 2019, Joule.

[9]  Shi Liu,et al.  Resonant domain-wall-enhanced tunable microwave ferroelectrics , 2018, Nature.

[10]  W. Luo,et al.  Influence of Hf content on structure and electric properties of PHT thin films with self-buffered layer by PLD , 2016 .

[11]  H. Hida,et al.  Precise piezoelectric characterization of Pb(Hf,Ti)O3 thin films deposited by combinatorial sputtering , 2016 .

[12]  Ilya Grinberg,et al.  Intrinsic ferroelectric switching from first principles , 2016, Nature.

[13]  W. Luo,et al.  Enhanced Ferroelectric Properties of Pb(Hf0.3Ti0.7)O3 Thin Films by SrRuO3 Bottom Electrode , 2016 .

[14]  Asif Islam Khan,et al.  Single crystal functional oxides on silicon , 2015, Nature Communications.

[15]  Mark Asta,et al.  A database to enable discovery and design of piezoelectric materials , 2015, Scientific Data.

[16]  Sergei V. Kalinin,et al.  Tuning Susceptibility via Misfit Strain in Relaxed Morphotropic Phase Boundary PbZr1‐xTixO3 Epitaxial Thin Films , 2014 .

[17]  A. Damodaran,et al.  Improved pyroelectric figures of merit in compositionally graded PbZr1-xTixO3 thin films. , 2013, ACS applied materials & interfaces.

[18]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[19]  Thomas Mikolajick,et al.  Hafnium Oxide Based CMOS Compatible Ferroelectric Materials , 2012 .

[20]  S. Bedair,et al.  PZT‐Based Piezoelectric MEMS Technology , 2012 .

[21]  U. Böttger,et al.  Ferroelectricity in hafnium oxide thin films , 2011 .

[22]  A. Kholkin,et al.  Ferroelectric domain structure of PbZr0.35Ti0.65O3 single crystals by piezoresponse force microscopy , 2011 .

[23]  Ho Won Jang,et al.  Giant Piezoelectricity on Si for Hyperactive MEMS , 2011, Science.

[24]  Dragan Damjanovic A morphotropic phase boundary system based on polarization rotation and polarization extension , 2010, 1007.4394.

[25]  K. Saito,et al.  Composition Dependency of Epitaxial Pb(Zr,Ti)O3 Films with Different Film Thickness , 2009 .

[26]  H. Morkoç,et al.  Processing, Structure, Properties, and Applications of PZT Thin Films , 2007 .

[27]  Y. Koyama,et al.  Ferroelectric domain structures around the morphotropic phase boundary of the piezoelectric material Pb Zr1-x Tix O3 , 2007 .

[28]  E. Soergel,et al.  Challenges for the determination of piezoelectric constants with piezoresponse force microscopy , 2007, cond-mat/0703402.

[29]  J. Scott,et al.  Applications of Modern Ferroelectrics , 2007, Science.

[30]  S. Gevorgian,et al.  Ferroelectric thin films: Review of materials, properties, and applications , 2006 .

[31]  Mark Hoffman,et al.  Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics , 2006 .

[32]  N. Setter,et al.  Piezoelectric response and free-energy instability in the perovskite crystals Ba Ti O 3 , Pb Ti O 3 , and Pb ( Zr , Ti ) O 3 , 2006, cond-mat/0604410.

[33]  M. Gutowski,et al.  Electronic structure differences in ZrO2 vs HfO2. , 2005, The journal of physical chemistry. A.

[34]  K. Saito,et al.  Dependence of electrical properties of epitaxial Pb(Zr,Ti)O3 thick films on crystal orientation and Zr∕(Zr+Ti) ratio , 2005 .

[35]  M. Kakihana,et al.  Neutron powder diffraction study of Pb(HfxTi1-x)O-3 ceramics (0.10 <= x <= 0.50) , 2005 .

[36]  Dragan Damjanovic Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics , 2005 .

[37]  Sergei V. Kalinin,et al.  Dynamic behaviour in piezoresponse force microscopy , 2005, Nanotechnology.

[38]  Sergei V. Kalinin,et al.  A decade of piezoresponse force microscopy: progress, challenges, and opportunities , 2005, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[39]  Astronomy,et al.  Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory , 2005, cond-mat/0501548.

[40]  M. Kakihana,et al.  Raman Scattering Study of the Pb(HfxTi1−x)O3 Ceramics , 2004 .

[41]  A. Tagantsev,et al.  Ferroelectric Materials for Microwave Tunable Applications , 2003 .

[42]  J. Scott,et al.  Fatigue in artificially layered Pb(Zr,Ti)O3 ferroelectric films , 2002 .

[43]  Rainer Waser,et al.  The interface screening model as origin of imprint in PbZrxTi1−xO3 thin films. I. Dopant, illumination, and bias dependence , 2002 .

[44]  A. Kowalski,et al.  Investigation of the morphotropic region in the Sr-doped lead hafnate-titanate solid solution Pb0.94Sr0.06Hf1-TixO3 , 2001 .

[45]  J. Soubeyroux,et al.  Ferroelectric-paraelectric phase transition in PbHf0.2Ti0.8O3 studied by neutron powder diffraction , 2001 .

[46]  V. Fridkin,et al.  General features of the intrinsic ferroelectric coercive field , 2001 .

[47]  Fei Xu,et al.  Domain wall motion and its contribution to the dielectric and piezoelectric properties of lead zirconate titanate films , 2001 .

[48]  Stefano de Gironcoli,et al.  Phonons and related crystal properties from density-functional perturbation theory , 2000, cond-mat/0012092.

[49]  G. Fantozzi,et al.  Lead hafnate titanate (PHT) ceramics: processing and properties , 2000 .

[50]  G. Shirane,et al.  Polarization rotation via a monoclinic phase in the piezoelectric 92% PbZn(1/3)Nb(2/3)O3-8% PbTiO3. , 2000, Physical review letters.

[51]  James F. Scott,et al.  A model for fatigue in ferroelectric perovskite thin films , 2000 .

[52]  Bourée,et al.  Octahedral deformations and cationic displacements in the ferroelectric PbHf(0.8)Ti(0.2)O(3): a neutron powder diffraction study from 10 to 770 K , 2000, Acta crystallographica. Section B, Structural science.

[53]  Yudin,et al.  Intrinsic ferroelectric coercive field , 2000, Physical review letters.

[54]  Guo,et al.  Origin of the high piezoelectric response in PbZr1-xTixO3 , 1999, Physical review letters.

[55]  R. Mckee,et al.  Crystalline Oxides on Silicon: The First Five Monolayers , 1998 .

[56]  R. Whatmore,et al.  Investigation into the Crystal Structure of the Perovskite Lead Hafnate, PbHfO3 , 1998 .

[57]  Paul Muralt,et al.  Piezoelectric thin films for MEMS , 1997, Applied Physics Letters.

[58]  Dragan Damjanovic,et al.  Contribution of the irreversible displacement of domain walls to the piezoelectric effect in barium titanate and lead zirconate titanate ceramics , 1997 .

[59]  J. Scott,et al.  Ferroelectric memories , 1997, Science.

[60]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[61]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[62]  Dragan Damjanovic,et al.  The Rayleigh law in piezoelectric ceramics , 1996 .

[63]  D. Dimos,et al.  Imprint in Ferroelectric Capacitors , 1996 .

[64]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[65]  X. Gonze,et al.  Adiabatic density-functional perturbation theory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[66]  G. Dormans,et al.  Measurement of piezoelectric coefficients of ferroelectric thin films , 1994 .

[67]  Jun Hee Lee,et al.  Fatigue and retention in ferroelectric Y‐Ba‐Cu‐O/Pb‐Zr‐Ti‐O/Y‐Ba‐Cu‐O heterostructures , 1992 .

[68]  Leslie E. Cross,et al.  THE EXTRINSIC NATURE OF NONLINEAR BEHAVIOR OBSERVED IN LEAD ZIRCONATE TITANATE FERROELECTRIC CERAMIC , 1991 .

[69]  L. E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part V: Theoretical calculations , 1989 .

[70]  Leslie E. Cross,et al.  Thermodynamic theory of the lead zirconate-titanate solid solution system, part III: Curie constant and sixth-order polarization interaction dielectric stiffness coefficients , 1989 .

[71]  J. Mayer,et al.  Reactions of Zr thin films with SiO2 substrates , 1988 .

[72]  Testa,et al.  Green's-function approach to linear response in solids. , 1987, Physical review letters.

[73]  S. M. Zaitsev,et al.  Structural study of PbTiO3, PbZrO3 and PbHfO3 , 1983 .

[74]  Jun Zhu,et al.  Improved fatigue property of hafnium substitute lead zirconate titanate deposited by pulse laser deposition , 2016, Journal of Materials Science: Materials in Electronics.

[75]  J. Melngailis,et al.  Dynamics of ferroelastic domains in ferroelectric thin films , 2003, Nature materials.

[76]  W. J. Merz Piezoelectric Ceramics , 1972, Nature.