Information-Driven Sensor Path Planning by Approximate Cell Decomposition

A methodology is developed for planning the sensing strategy of a robotic sensor deployed for the purpose of classifying multiple fixed targets located in an obstacle-populated workspace. Existing path planning techniques are not directly applicable to robots whose primary objective is to gather sensor measurements using a bounded field of view (FOV). This paper develops a novel approximate cell-decomposition method in which obstacles, targets, sensor's platform, and FOV are represented as closed and bounded subsets of an Euclidean workspace. The method constructs a connectivity graph with observation cells that is pruned and transformed into a decision tree from which an optimal sensing strategy can be computed. The effectiveness of the optimal sensing strategies obtained by this methodology is demonstrated through a mine-hunting application. Numerical experiments show that these strategies outperform shortest path, complete coverage, random, and grid search strategies, and are applicable to nonoverpass capable robots that must avoid targets as well as obstacles.

[1]  Chenghui Cai,et al.  Bayesian Network Modeling of Acoustic Sensor Measurements , 2007, 2007 IEEE Sensors.

[2]  Gregory D. Hager,et al.  Computational Methods for Task-directed Sensor Data Fusion and Sensor Planning , 1991, Int. J. Robotics Res..

[3]  David Maxwell Chickering,et al.  Learning Bayesian Networks: The Combination of Knowledge and Statistical Data , 1994, Machine Learning.

[4]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[5]  Mani Srivastava,et al.  Overview of sensor networks , 2004 .

[6]  Nageswara S. V. Rao,et al.  Robot navigation in unknown generalized polygonal terrains using vision sensors , 1995, IEEE Trans. Syst. Man Cybern..

[7]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[8]  Gianpaolo Conte,et al.  Hierarchical path planning in a multi-robot environment with a simple navigation function , 1995, IEEE Trans. Syst. Man Cybern..

[9]  Jean-Claude Latombe,et al.  New heuristic algorithms for efficient hierarchical path planning , 1991, IEEE Trans. Robotics Autom..

[10]  Joonki Paik,et al.  Image Processing-Based Mine Detection Techniques: A Review , 2002 .

[11]  Ming Qian,et al.  Probabilistic deployment for multiple sensor systems , 2005, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[12]  Keith Kastella Discrimination gain to optimize detection and classification , 1997, IEEE Trans. Syst. Man Cybern. Part A.

[13]  S.X. Yang,et al.  A neural network approach to complete coverage path planning , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[14]  Feng Zhao,et al.  Information-driven dynamic sensor collaboration , 2002, IEEE Signal Process. Mag..

[15]  Stuart E. Dreyfus,et al.  Applied Dynamic Programming , 1965 .

[16]  David J. Daniels,et al.  A review of GPR for landmine detection , 2006 .

[17]  Bernard Faverjon Object level programming of industrial robots , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[18]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Two Volume Set , 1995 .

[19]  R. Fierro,et al.  Decentralized cooperative control - A multivehicle platform for research in networked embedded systems , 2007, IEEE Control Systems.

[20]  J. Schwartz,et al.  On the “piano movers” problem. II. General techniques for computing topological properties of real algebraic manifolds , 1983 .

[21]  Micha Sharir,et al.  An efficient motion-planning algorithm for a convex polygonal object in two-dimensional polygonal space , 1990, Discret. Comput. Geom..

[22]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.

[23]  Stéphane Perrin,et al.  Multisensor fusion in the frame of evidence theory for landmines detection , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[24]  S. Ferrari,et al.  Demining sensor modeling and feature-level fusion by Bayesian networks , 2006, IEEE Sensors Journal.

[25]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[26]  Howie Choset,et al.  Path Planning for Robotic Demining: Robust Sensor-Based Coverage of Unstructured Environments and Probabilistic Methods , 2003, Int. J. Robotics Res..

[27]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[28]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[29]  Lawrence Carin,et al.  Application of the theory of optimal experiments to adaptive electromagnetic-induction sensing of buried targets , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Kai-Tai Song,et al.  Reactive navigation in dynamic environment using a multisensor predictor , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[31]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[32]  Silvia Ferrari,et al.  A Q-Learning approach to developing an automated neural computer player for the board game of CLUE® , 2008, 2008 IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence).

[33]  Abdullah Al Mamun,et al.  Hierarchical Incremental Path Planning and Situation-Dependent Optimized Dynamic Motion Planning Considering Accelerations , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[34]  Jan M. H. Hendrickx,et al.  Soil effects on thermal signatures of buried nonmetallic landmines , 2003, SPIE Defense + Commercial Sensing.

[35]  Frank L. Lewis,et al.  Control of a nonholonomic mobile robot using neural networks , 1998, IEEE Trans. Neural Networks.

[36]  Rafael Fierro,et al.  A Geometric Optimization Approach to Detecting and Intercepting Dynamic Targets , 2007, ACC.

[37]  Seichi Okamura,et al.  Properties of Dielectric Ring Resonator and Application to Moisture Measurement , 2002 .

[38]  Wayne W. Schmaedeke Information-based sensor management , 1993, Defense, Security, and Sensing.

[39]  Alfred O. Hero,et al.  Sensor management using an active sensing approach , 2005, Signal Process..

[40]  Mark G. Terwilliger,et al.  Overview of Sensor Networks , 2004 .

[41]  Y.F. Li,et al.  Automatic sensor placement for model-based robot vision , 2004, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[42]  Jean-Claude Latombe,et al.  Robot motion planning , 1970, The Kluwer international series in engineering and computer science.

[43]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[44]  Larry S. Davis,et al.  Multiresolution path planning for mobile robots , 1986, IEEE J. Robotics Autom..

[45]  Günther Schmidt,et al.  Path planning and guidance techniques for an autonomous mobile cleaning robot , 1994, Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'94).

[46]  Esther M. Arkin,et al.  Angewandte Mathematik Und Informatik Universit at Zu K Oln Approximation Algorithms for Lawn Mowing and Milling Ss Andor P.fekete Center for Parallel Computing Universitt at Zu Kk Oln D{50923 Kk Oln Germany Approximation Algorithms for Lawn Mowing and Milling , 2022 .

[47]  Deborah Estrin,et al.  Guest Editors' Introduction: Overview of Sensor Networks , 2004, Computer.

[48]  Zheng Sun,et al.  On Robotic Optimal Path Planning in Polygonal Regions With Pseudo-Euclidean Metrics , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[49]  Yong Wang,et al.  Energy-efficient computing for wildlife tracking: design tradeoffs and early experiences with ZebraNet , 2002, ASPLOS X.

[50]  Erol Gelenbe,et al.  Autonomous search for mines , 1998, Eur. J. Oper. Res..

[51]  R. Siegel,et al.  Land mine detection , 2002 .

[52]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[53]  Thierry Siméon,et al.  Path coordination for multiple mobile robots: a resolution-complete algorithm , 2002, IEEE Trans. Robotics Autom..

[54]  Shengyong Chen,et al.  Vision sensor planning for 3-D model acquisition , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[55]  Micha Sharir,et al.  On the union of Jordan regions and collision-free translational motion amidst polygonal obstacles , 1986, Discret. Comput. Geom..

[56]  Jimmy J. M. Tan,et al.  Minimum partitioning simple rectilinear polygons in O(n log log n) - time , 1989, SCG '89.

[57]  Camillo J. Taylor,et al.  Dynamic Sensor Planning and Control for Optimally Tracking Targets , 2003, Int. J. Robotics Res..

[58]  Dimitri P. Bertsekas,et al.  Dynamic Programming and Optimal Control, Vol. II , 1976 .

[59]  J. R. Lockwood,et al.  Alternatives for landmine detection , 2003 .

[60]  Silvia Ferrari,et al.  Information-Driven Search Strategies in the Board Game of CLUE $^{\circit{R}}$ , 2009, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[61]  Jean-Daniel Boissonnat,et al.  A practical exact motion planning algorithm for polygonal objects amidst polygonal obstacles , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[62]  Chenghui Cai,et al.  Comparison of Information-Theoretic Objective Functions for Decision Support in Sensor Systems , 2007, 2007 American Control Conference.

[63]  S. Sitharama Iyengar,et al.  Robot navigation in unknown terrains: Introductory survey of non-heuristic algorithms , 1993 .

[64]  Yong K. Hwang,et al.  A heuristic and complete planner for the classical mover's problem , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[65]  Alfred O. Hero,et al.  Multi-platform information-based sensor management , 2005, SPIE Defense + Commercial Sensing.

[66]  Jean-Claude Latombe,et al.  Motion Planning with Uncertainty: A Landmark Approach , 1995, Artif. Intell..

[67]  Lawrence Carin,et al.  Nonmyopic Multiaspect Sensing With Partially Observable Markov Decision Processes , 2007, IEEE Transactions on Signal Processing.