Optimal algorithms for image understanding: Current status and future plans
暂无分享,去创建一个
[1] Takeo Kanade,et al. Adapting optical-flow to measure object motion in reflectance and x-ray image sequences (abstract only) , 1984, COMG.
[2] G. Herman,et al. Three-dimensional reconstruction from projections: a review of algorithms. , 1974, International review of cytology.
[3] Henryk Wozniakowski,et al. A general theory of optimal algorithms , 1980, ACM monograph series.
[4] P. Laurent. Approximation et optimisation , 1972 .
[5] Henryk Wozniakowski,et al. Information, Uncertainty, Complexity , 1982 .
[6] M. Atteia. Fonctions «spline» et noyaux reproduisants d'Aronszajn-Bergman , 1970 .
[7] J. Meinguet. Surface Spline Interpolation: Basic Theory and Computational Aspects , 1984 .
[8] B K Horn,et al. Calculating the reflectance map. , 1979, Applied optics.
[9] David Lee,et al. Contributions to information based complexity, image understanding and logic circuit design , 1986 .
[10] Berthold K. P. Horn,et al. Determining Optical Flow , 1981, Other Conferences.
[11] B. Logan,et al. Optimal reconstruction of a function from its projections , 1975 .
[12] Henryk Wozniakowski,et al. On the Optimal Solution of Large Linear Systems , 1984, JACM.
[13] F. E. Nicodemus,et al. Geometrical considerations and nomenclature for reflectance , 1977 .
[14] Katsushi Ikeuchi,et al. Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..
[15] Demetri Terzopoulos,et al. Multiresolution computation of visible-surface representations , 1984 .