Optimal algorithms for image understanding: Current status and future plans

Abstract We discuss four image understanding problems: 2 1 2 D sketch, three-dimensional reconstruction from projections, shape from shading, and optical flow. We point out how known general optimality results may be applied to the first three problems. We indicate some preliminary results and work in progress, concerning the numerical solution of all four problems. Algorithms which differ from those currently used in practice are proposed.

[1]  Takeo Kanade,et al.  Adapting optical-flow to measure object motion in reflectance and x-ray image sequences (abstract only) , 1984, COMG.

[2]  G. Herman,et al.  Three-dimensional reconstruction from projections: a review of algorithms. , 1974, International review of cytology.

[3]  Henryk Wozniakowski,et al.  A general theory of optimal algorithms , 1980, ACM monograph series.

[4]  P. Laurent Approximation et optimisation , 1972 .

[5]  Henryk Wozniakowski,et al.  Information, Uncertainty, Complexity , 1982 .

[6]  M. Atteia Fonctions «spline» et noyaux reproduisants d'Aronszajn-Bergman , 1970 .

[7]  J. Meinguet Surface Spline Interpolation: Basic Theory and Computational Aspects , 1984 .

[8]  B K Horn,et al.  Calculating the reflectance map. , 1979, Applied optics.

[9]  David Lee,et al.  Contributions to information based complexity, image understanding and logic circuit design , 1986 .

[10]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[11]  B. Logan,et al.  Optimal reconstruction of a function from its projections , 1975 .

[12]  Henryk Wozniakowski,et al.  On the Optimal Solution of Large Linear Systems , 1984, JACM.

[13]  F. E. Nicodemus,et al.  Geometrical considerations and nomenclature for reflectance , 1977 .

[14]  Katsushi Ikeuchi,et al.  Numerical Shape from Shading and Occluding Boundaries , 1981, Artif. Intell..

[15]  Demetri Terzopoulos,et al.  Multiresolution computation of visible-surface representations , 1984 .