Belief function independence: I. The marginal case

In this paper, we study the notion of marginal independence between two sets of variables when uncertainty is expressed by belief functions as understood in the context of the transferable belief model (TBM). We define the concepts of non-interactivity and irrelevance, that are not equivalent. Doxastic independence for belief functions is defined as irrelevance and irrelevance preservation under Dempster's rule of combination. We prove that doxastic independence and non-interactivity are equivalent.

[1]  J. Kohlas,et al.  A Mathematical Theory of Hints: An Approach to the Dempster-Shafer Theory of Evidence , 1995 .

[2]  Jirina Vejnarová Conditional independence relations in possibility theory , 2000 .

[3]  Wolfgang Spohn,et al.  Ordinal Conditional Functions: A Dynamic Theory of Epistemic States , 1988 .

[4]  Dan Geiger,et al.  Identifying independence in bayesian networks , 1990, Networks.

[5]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[6]  L. Zadeh Fuzzy sets as a basis for a theory of possibility , 1999 .

[7]  Ronald R. Yager,et al.  Uncertainty in Intelligent Systems , 1993 .

[8]  A. P. Dawid,et al.  Independence properties of directed Markov fields. Networks, 20, 491-505 , 1990 .

[9]  Frank Klawonn,et al.  The Dynamic of Belief in the Transferable Belief Model and Specialization-Generalization Matrices , 1992, UAI.

[10]  Inés Couso,et al.  Examples of Independence for Imprecise Probabilities , 1999, ISIPTA.

[11]  Khaled Mellouli,et al.  Propagating belief functions in qualitative Markov trees , 1987, Int. J. Approx. Reason..

[12]  H. Kunzi,et al.  Lectu re Notes in Economics and Mathematical Systems , 1975 .

[13]  Steffen L. Lauritzen,et al.  Independence properties of directed markov fields , 1990, Networks.

[14]  Philippe Smets,et al.  The Transferable Belief Model for Quantified Belief Representation , 1998 .

[15]  Andrew P. Sage,et al.  Uncertainty in Artificial Intelligence , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[16]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[17]  Milan Studený Formal Properties of Conditional Independence in Different Calculi of AI , 1993, ECSQARU.

[18]  Prakash P. Shenoy,et al.  Conditional independence in valuation-based systems , 1994, Int. J. Approx. Reason..

[19]  Paolo Vicig Epistemic independence for imprecise probabilities , 2000, Int. J. Approx. Reason..

[20]  A. Dawid Conditional Independence , 1997 .

[21]  A. Dawid Conditional Independence in Statistical Theory , 1979 .

[22]  P. Walley Statistical Reasoning with Imprecise Probabilities , 1990 .

[23]  Pascale Fonck Conditional Independence in Possibility Theory , 1994, UAI.

[24]  李幼升,et al.  Ph , 1989 .

[25]  E. Hisdal Conditional possibilities independence and noninteraction , 1978 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  P. Smets,et al.  Independence concepts for belief functions , 2002 .

[28]  Alessandro Saffiotti,et al.  The Transferable Belief Model , 1991, ECSQARU.

[29]  Fábio Gagliardi Cozman Irrelevance and Independence Axioms in Quasi-Bayesian Theory , 1999, ESCQARU.

[30]  Didier Dubois,et al.  Expressing Independence in a Possibilistic Framework and its Application to Default Reasoning , 1994, ECAI.

[31]  Hong Xu An Efficient Implementation of Belief Function Propagation , 1991, UAI.