Reciprocally-Rotating Velocity Obstacles

Modern multi-agent systems frequently use highlevel planners to extract basic paths for agents, and then rely on local collision avoidance to ensure that the agents reach their destinations without colliding with one another or dynamic obstacles. One state-of-the-art local collision avoidance technique is Optimal Reciprocal Collision Avoidance (ORCA). Despite being fast and efficient for circular-shaped agents, ORCA may deadlock when polygonal shapes are used. To address this shortcoming, we introduce Reciprocally-Rotating Velocity Obstacles (RRVO). RRVO generalizes ORCA by introducing a notion of rotation for polygonally-shaped agents. This generalization permits more realistic motion than ORCA and does not suffer from as much deadlock. In this paper, we present the theory of RRVO and show empirically that it does not suffer from the deadlock issue ORCA has, permits agents to reach goals faster, and has a comparable collision rate at the cost of performance overhead quadratic in the (typically small) user-defined parameter δ.

[1]  W ReynoldsCraig Flocks, herds and schools: A distributed behavioral model , 1987 .

[2]  Petros Faloutsos,et al.  Egocentric affordance fields in pedestrian steering , 2009, I3D '09.

[3]  Dinesh Manocha,et al.  Reciprocal n-Body Collision Avoidance , 2011, ISRR.

[4]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1985, Autonomous Robot Vehicles.

[5]  Richard T. Vaughan,et al.  BRaVO: Biased Reciprocal Velocity Obstacles Break Symmetry in Dense Robot Populations , 2012, 2012 Ninth Conference on Computer and Robot Vision.

[6]  S. LaValle Rapidly-exploring random trees : a new tool for path planning , 1998 .

[7]  Robert Michael Young,et al.  Managing interaction between users and agents in a multi-agent storytelling environment , 2003, AAMAS '03.

[8]  Nalini Venkatasubramanian,et al.  Multi-Agent Simulation of Disaster Response , 2006 .

[9]  Rajeev Motwani,et al.  Path Planning in Expansive Configuration Spaces , 1999, Int. J. Comput. Geom. Appl..

[10]  Dinesh Manocha,et al.  Simulating heterogeneous crowd behaviors using personality trait theory , 2011, SCA '11.

[11]  Ming C. Lin,et al.  Constraint-Based Motion Planning Using Voronoi Diagrams , 2002, WAFR.

[12]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[13]  Ming C. Lin,et al.  Hybrid Long-Range Collision Avoidance for Crowd Simulation , 2013, IEEE Transactions on Visualization and Computer Graphics.

[14]  Maryrose McGowan,et al.  Interior Graphic Standards , 2003 .

[15]  Tomás Lozano-Pérez,et al.  On multiple moving objects , 2005, Algorithmica.

[16]  Dinesh Manocha,et al.  Multi-robot coordination using generalized social potential fields , 2009, 2009 IEEE International Conference on Robotics and Automation.

[17]  Stephen Chenney,et al.  Flow tiles , 2004, SCA '04.

[18]  Dinesh Manocha,et al.  PLEdestrians: a least-effort approach to crowd simulation , 2010, SCA '10.

[19]  E. J.,et al.  ON THE COMPLEXITY OF MOTION PLANNING FOR MULTIPLE INDEPENDENT OBJECTS ; PSPACE HARDNESS OF THE " WAREHOUSEMAN ' S PROBLEM " . * * ) , 2022 .

[20]  Demetri Terzopoulos,et al.  Autonomous pedestrians , 2005, SCA '05.

[21]  Adrien Treuille,et al.  Continuum crowds , 2006, SIGGRAPH 2006.

[22]  Jur P. van den Berg,et al.  Meso-scale planning for multi-agent navigation , 2013, 2013 IEEE International Conference on Robotics and Automation.

[23]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[24]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[25]  Helbing,et al.  Social force model for pedestrian dynamics. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Paolo Fiorini,et al.  Motion Planning in Dynamic Environments Using Velocity Obstacles , 1998, Int. J. Robotics Res..

[27]  Roger L. Hughes,et al.  A continuum theory for the flow of pedestrians , 2002 .

[28]  Ming C. Lin,et al.  Aggregate dynamics for dense crowd simulation , 2009, ACM Trans. Graph..

[29]  Dinesh Manocha,et al.  ClearPath: highly parallel collision avoidance for multi-agent simulation , 2009, SCA '09.

[30]  Dinesh Manocha,et al.  Composite agents , 2008, SCA '08.

[31]  Raimund Seidel,et al.  Linear programming and convex hulls made easy , 1990, SCG '90.

[32]  M. V. Kreveld Computational Geometry , 2000, Springer Berlin Heidelberg.

[33]  Nancy M. Amato,et al.  Environmental Effect on Egress Simulation , 2012, MIG.

[34]  Dinesh Manocha,et al.  Reciprocal Velocity Obstacles for real-time multi-agent navigation , 2008, 2008 IEEE International Conference on Robotics and Automation.

[35]  Craig W. Reynolds Flocks, herds, and schools: a distributed behavioral model , 1998 .

[36]  Mark H. Overmars,et al.  A Predictive Collision Avoidance Model for Pedestrian Simulation , 2009, MIG.

[37]  John F. Canny,et al.  New lower bound techniques for robot motion planning problems , 1987, 28th Annual Symposium on Foundations of Computer Science (sfcs 1987).

[38]  Glenn Reinman,et al.  A modular framework for adaptive agent-based steering , 2011, SI3D.

[39]  David G. Kirkpatrick,et al.  Optimal Search in Planar Subdivisions , 1983, SIAM J. Comput..

[40]  I. Benenson MULTI-AGENT SIMULATIONS OF RESIDENTIAL DYNAMICS IN THE CITY , 1998 .