Attention alters orientation processing in the human lateral geniculate nucleus

Orientation selectivity is a cornerstone property of vision, commonly believed to emerge in the primary visual cortex. We found that reliable orientation information could be detected even earlier, in the human lateral geniculate nucleus, and that attentional feedback selectively altered these orientation responses. This attentional modulation may allow the visual system to modify incoming feature-specific signals at the earliest possible processing site.

[1]  D J Heeger,et al.  Robust multiresolution alignment of MRI brain volumes , 2000, Magnetic resonance in medicine.

[2]  David Whitney,et al.  Attention gates visual coding in the human pulvinar , 2012, Nature Communications.

[3]  Wim Vanduffel,et al.  The Radial Bias: A Different Slant on Visual Orientation Sensitivity in Human and Nonhuman Primates , 2006, Neuron.

[4]  Amy M. Ni,et al.  Tuned Normalization Explains the Size of Attention Modulations , 2012, Neuron.

[5]  Thomas Serre,et al.  Robust Object Recognition with Cortex-Like Mechanisms , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  R. Wurtz,et al.  Guarding the gateway to cortex: attention in visual thalamus , 2008, Nature.

[7]  B. Julesz,et al.  Spatial-frequency masking in vision: critical bands and spread of masking. , 1972, Journal of the Optical Society of America.

[8]  Jeremy Freeman,et al.  Coarse-Scale Biases for Spirals and Orientation in Human Visual Cortex , 2013, The Journal of Neuroscience.

[9]  A. Leventhal,et al.  Organized arrangement of orientation-sensitive relay cells in the cat's dorsal lateral geniculate nucleus , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[10]  Keith A Schneider,et al.  Subcortical Mechanisms of Feature-Based Attention , 2011, The Journal of Neuroscience.

[11]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[12]  Alex R. Wade,et al.  Dynamics of Normalization Underlying Masking in Human Visual Cortex , 2012, The Journal of Neuroscience.

[13]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[14]  Trichur Raman Vidyasagar,et al.  Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18 , 2004, Experimental Brain Research.

[15]  Paul R. Martin,et al.  Cortical-Like Receptive Fields in the Lateral Geniculate Nucleus of Marmoset Monkeys , 2013, The Journal of Neuroscience.

[16]  D H Brainard,et al.  The Psychophysics Toolbox. , 1997, Spatial vision.

[17]  A. Leventhal,et al.  Retinal ganglion cell dendritic fields in old-world monkeys are oriented radially , 1986, Brain Research.

[18]  Janneke F. M. Jehee,et al.  Attention Improves Encoding of Task-Relevant Features in the Human Visual Cortex , 2011, The Journal of Neuroscience.

[19]  A. Pouget,et al.  Neural correlations, population coding and computation , 2006, Nature Reviews Neuroscience.

[20]  Frank Tong,et al.  Perceptual Learning Selectively Refines Orientation Representations in Early Visual Cortex , 2012, The Journal of Neuroscience.

[21]  A. B. Bonds,et al.  Are primate lateral geniculate nucleus (LGN) cells really sensitive to orientation or direction? , 2002, Visual Neuroscience.

[22]  Arthur Gretton,et al.  Comparison of Pattern Recognition Methods in Classifying High-resolution Bold Signals Obtained at High Magnetic Field in Monkeys , 2008 .

[23]  A. Sillito,et al.  Functional alignment of feedback effects from visual cortex to thalamus , 2006, Nature Neuroscience.

[24]  D. Ferster,et al.  Neural mechanisms of orientation selectivity in the visual cortex. , 2000, Annual review of neuroscience.

[25]  Jeremy Freeman,et al.  Orientation Decoding Depends on Maps, Not Columns , 2011, The Journal of Neuroscience.

[26]  Michael S. Pratte,et al.  How attention extracts objects from noise. , 2013, Journal of neurophysiology.

[27]  D G Pelli,et al.  The VideoToolbox software for visual psychophysics: transforming numbers into movies. , 1997, Spatial vision.

[28]  Sabine Kastner,et al.  Effects of Sustained Spatial Attention in the Human Lateral Geniculate Nucleus and Superior Colliculus , 2009, The Journal of Neuroscience.

[29]  M. Pinsk,et al.  Attention modulates responses in the human lateral geniculate nucleus , 2002, Nature Neuroscience.

[30]  P. C. Murphy,et al.  Feedback connections to the lateral geniculate nucleus and cortical response properties. , 1999, Science.

[31]  R. Patterson Auditory filter shapes derived with noise stimuli. , 1976, The Journal of the Acoustical Society of America.

[32]  C. Enroth-Cugell,et al.  Functional characteristics and diversity of cat retinal ganglion cells. Basic characteristics and quantitative description. , 1984, Investigative ophthalmology & visual science.

[33]  Sabine Kastner,et al.  Neural correlates of binocular rivalry in the human lateral geniculate nucleus , 2005, Nature Neuroscience.

[34]  Andrew D Huberman,et al.  Diverse Visual Features Encoded in Mouse Lateral Geniculate Nucleus , 2013, The Journal of Neuroscience.

[35]  Colin W. G. Clifford,et al.  Discrimination of the local orientation structure of spiral Glass patterns early in human visual cortex , 2009, NeuroImage.

[36]  Nicolai Petkov,et al.  Comparison of texture features based on Gabor filters , 2002, IEEE Trans. Image Process..

[37]  Timothy Edward John Behrens,et al.  Reliable identification of the auditory thalamus using multi-modal structural analyses , 2006, NeuroImage.

[38]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[39]  R. Blake,et al.  Dissociation of Neural Mechanisms Underlying Orientation Processing in Humans , 2009, Current Biology.

[40]  Nikolaus Kriegeskorte,et al.  fMRI orientation decoding in V1 does not require global maps or globally coherent orientation stimuli , 2012, Front. Psychol..

[41]  Sabine Kastner,et al.  Beyond a relay nucleus: neuroimaging views on the human LGN. , 2006, Progress in brain research.

[42]  Sabine Kastner,et al.  Functional imaging of the human lateral geniculate nucleus and pulvinar. , 2004, Journal of neurophysiology.

[43]  D. M. Green,et al.  Signal detection theory and psychophysics , 1966 .

[44]  F. Tong,et al.  Decoding reveals the contents of visual working memory in early visual areas , 2009, Nature.