Learning State Representations for Query Optimization with Deep Reinforcement Learning
暂无分享,去创建一个
Magdalena Balazinska | Johannes Gehrke | S. Sathiya Keerthi | Jennifer Ortiz | M. Balazinska | S. Keerthi | J. Gehrke | Jennifer Ortiz | S. Keerthi | S. S. Keerthi
[1] Joseph M. Hellerstein,et al. Eddies: continuously adaptive query processing , 2000, SIGMOD 2000.
[2] Volker Markl,et al. LEO - DB2's LEarning Optimizer , 2001, VLDB.
[3] Richard S. Sutton,et al. Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.
[4] Todd Eavis,et al. Rk-hist: an r-tree based histogram for multi-dimensional selectivity estimation , 2007, CIKM '07.
[5] Christian S. Jensen,et al. A Reinforcement Learning Approach for Adaptive Query Processing , 2008 .
[6] Csaba Szepesvári,et al. Algorithms for Reinforcement Learning , 2010, Synthesis Lectures on Artificial Intelligence and Machine Learning.
[7] Calisto Zuzarte,et al. Cardinality estimation using neural networks , 2015, CASCON.
[8] Viktor Leis,et al. How Good Are Query Optimizers, Really? , 2015, Proc. VLDB Endow..
[9] Geoffrey E. Hinton,et al. Deep Learning , 2015, Nature.
[10] Shane Legg,et al. Human-level control through deep reinforcement learning , 2015, Nature.
[11] Gang Chen,et al. Database Meets Deep Learning: Challenges and Opportunities , 2016, SGMD.
[12] Martín Abadi,et al. TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.
[13] Viktor Leis,et al. Cardinality Estimation Done Right: Index-Based Join Sampling , 2017, CIDR.
[14] Volker Markl,et al. Estimating Join Selectivities using Bandwidth-Optimized Kernel Density Models , 2017, Proc. VLDB Endow..
[15] Olga Papaemmanouil,et al. Deep Reinforcement Learning for Join Order Enumeration , 2018, aiDM@SIGMOD.
[16] David Filliat,et al. State Representation Learning for Control: An Overview , 2018, Neural Networks.
[17] Tim Kraska,et al. The Case for Learned Index Structures , 2018 .