Robust object tracking with RGBD-based sparse learning

Robust object tracking has been an important and challenging research area in the field of computer vision for decades. With the increasing popularity of affordable depth sensors, range data is widely used in visual tracking for its ability to provide robustness to varying illumination and occlusions. In this paper, a novel RGBD and sparse learning based tracker is proposed. The range data is integrated into the sparse learning framework in three respects. First, an extra depth view is added to the color image based visual features as an independent view for robust appearance modeling. Then, a special occlusion template set is designed to replenish the existing dictionary for handling various occlusion conditions. Finally, a depth-based occlusion detection method is proposed to efficiently determine an accurate time for the template update. Extensive experiments on both KITTI and Princeton data sets demonstrate that the proposed tracker outperforms the state-of-the-art tracking algorithms, including both sparse learning and RGBD based methods.

[1]  Fatih Murat Porikli,et al.  Covariance Tracking using Model Update Based on Lie Algebra , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[2]  Haibin Ling,et al.  Robust Visual Tracking using 1 Minimization , 2009 .

[3]  Li Bai,et al.  Robust infrared vehicle tracking across target pose change using L1 regularization , 2010, 2010 13th International Conference on Information Fusion.

[4]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[5]  Robert T. Collins,et al.  Object tracking and detection after occlusion via numerical hybrid local and global mode-seeking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[6]  Narendra Ahuja,et al.  Robust Visual Tracking Via Consistent Low-Rank Sparse Learning , 2014, International Journal of Computer Vision.

[7]  Ming-Hsuan Yang,et al.  Incremental Learning for Robust Visual Tracking , 2008, International Journal of Computer Vision.

[8]  Jianxiong Xiao,et al.  Tracking Revisited Using RGBD Camera: Unified Benchmark and Baselines , 2013, 2013 IEEE International Conference on Computer Vision.

[9]  Haibin Ling,et al.  Robust Visual Tracking and Vehicle Classification via Sparse Representation , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Changsheng Xu,et al.  Structural Sparse Tracking , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[11]  Xi Chen,et al.  Accelerated Gradient Method for Multi-task Sparse Learning Problem , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[12]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[13]  Narendra Ahuja,et al.  Low-Rank Sparse Learning for Robust Visual Tracking , 2012, ECCV.

[14]  Shai Avidan,et al.  Ensemble Tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[17]  Junzhou Huang,et al.  Robust and Fast Collaborative Tracking with Two Stage Sparse Optimization , 2010, ECCV.

[18]  Narendra Ahuja,et al.  Robust Visual Tracking via Structured Multi-Task Sparse Learning , 2012, International Journal of Computer Vision.

[19]  Li Bai,et al.  Minimum error bounded efficient ℓ1 tracker with occlusion detection , 2011, CVPR 2011.

[20]  Ming-Hsuan Yang,et al.  Visual tracking with online Multiple Instance Learning , 2009, CVPR.

[21]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[22]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[23]  Zhibin Hong,et al.  Tracking via Robust Multi-task Multi-view Joint Sparse Representation , 2013, 2013 IEEE International Conference on Computer Vision.

[24]  Zhiyu Xiang,et al.  Robust visual tracking via binocular multi-task multi-view joint sparse representation , 2015, 2015 SAI Intelligent Systems Conference (IntelliSys).

[25]  Lei Zhang,et al.  Real-Time Compressive Tracking , 2012, ECCV.

[26]  Lei Zhang,et al.  Gabor Feature Based Sparse Representation for Face Recognition with Gabor Occlusion Dictionary , 2010, ECCV.

[27]  Soo-Chang Pei,et al.  Image normalization for pattern recognition , 1995, Image Vis. Comput..

[28]  Pong C. Yuen,et al.  Multi-cue Visual Tracking Using Robust Feature-Level Fusion Based on Joint Sparse Representation , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Kai Oliver Arras,et al.  People tracking in RGB-D data with on-line boosted target models , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[30]  Haibin Ling,et al.  Robust visual tracking using ℓ1 minimization , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[31]  Yi Wu,et al.  Online Object Tracking: A Benchmark , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Zhengyou Zhang,et al.  Iterative point matching for registration of free-form curves and surfaces , 1994, International Journal of Computer Vision.

[33]  Silvio Savarese,et al.  Detecting and tracking people using an RGB-D camera via multiple detector fusion , 2011, 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops).

[34]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[35]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Andrew Blake,et al.  Sparse Bayesian learning for efficient visual tracking , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[37]  Haibin Ling,et al.  Real time robust L1 tracker using accelerated proximal gradient approach , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Narendra Ahuja,et al.  Robust visual tracking via multi-task sparse learning , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.