Fusion power production in International Thermonuclear Experimental Reactor baseline H-mode scenarios

Self-consistent simulations of 15 MA ITER H-mode DT scenarios, from ramp-up through flat-top, are carried out. Electron and ion temperatures, toroidal angular frequency, and currents are evolved, in simulations carried out using the predictive TRANSPort and integrated modeling code starting with initial profiles and equilibria obtained from tokamak simulation code studies. Studies are carried out examining the dependence and sensitivity of fusion power production on electron density, argon impurity concentration, choice of radio frequency heating, pedestal temperature without and with E × B flow shear effects included, and the degree of plasma rotation. The goal of these whole-device ITER simulations is to identify dependencies that might impact ITER fusion performance.

[1]  M. Sugihara,et al.  Comparison of ITER performance predicted by semi-empirical and theory-based transport models , 2003 .

[2]  G. Bateman,et al.  The tokamak Monte Carlo fast ion module NUBEAM in the National Transport Code Collaboration library , 2004 .

[3]  S. Jardin,et al.  Dynamic modeling of transport and positional control of tokamaks , 1986 .

[4]  Arnold H. Kritz,et al.  Models for the pedestal temperature at the edge of H-mode tokamak plasmas , 2002 .

[5]  Jose Milovich,et al.  Toroidal gyro‐Landau fluid model turbulence simulations in a nonlinear ballooning mode representation with radial modes , 1994 .

[6]  Stephen C. Jardin,et al.  Dynamic modelling of lower hybrid current drive , 1994 .

[7]  Scott Kruger,et al.  Modelling of ELM dynamics for DIII-D and ITER , 2007 .

[8]  G. Bateman,et al.  Magnetohydrodynamic-calibrated edge-localized mode model in simulations of International Thermonuclear Experimental Reactor , 2005 .

[9]  J. Weiland,et al.  Symmetry breaking effects of toroidicity on toroidal momentum transport , 2009 .

[10]  R. V. Budny,et al.  Comparisons of predicted plasma performance in ITER H-mode plasmas with various mixes of external heating , 2009 .

[11]  N. Badnell,et al.  ADAS: Atomic data, modelling and analysis for fusion , 2007 .

[12]  Arnold H. Kritz,et al.  Integrated modeling of temperature profiles in L-mode tokamak discharges , 2014 .

[13]  P. Barabaschi,et al.  ITER: opportunity of burning plasma studies , 2001 .

[14]  R. J. Groebner,et al.  Development and validation of a predictive model for the pedestal height , 2008 .

[15]  C. Kessel,et al.  Study of Heating and Fusion Power Production in ITER Discharges , 2011 .

[16]  Arnold H. Kritz,et al.  Physics basis of Multi-Mode anomalous transport module , 2013 .

[17]  Federico David Halpern,et al.  Integrated simulations of saturated neoclassical tearing modes in DIII-D, Joint European Torus, and ITER plasmas , 2006 .

[18]  Marco Brambilla,et al.  Numerical simulation of ion cyclotron waves in tokamak plasmas , 1999 .

[19]  L. Luo,et al.  Improved Multi-Mode anomalous transport module for tokamak plasmas , 2013, Comput. Phys. Commun..

[20]  C. Kessel,et al.  Effect of pedestal height and internal transport barriers on International Thermonuclear Experimental Reactor target steady state simulations , 2011 .

[21]  Charles F. F. Karney,et al.  Current in wave-driven plasmas , 1986 .

[22]  C. Kessel,et al.  Integrated modelling for prediction of optimized ITER performance , 2011 .

[23]  C. Kessel,et al.  Predictions of H-mode performance in ITER , 2008 .

[24]  Frank Jenko,et al.  Critical gradient formula for toroidal electron temperature gradient modes , 2001 .

[25]  Douglas McCune,et al.  Predictive simulations of ITER including neutral beam driven toroidal rotation , 2008 .

[26]  Marco Brambilla,et al.  Full Wave Simulations of Fast Wave Mode Conversion and Lower Hybrid Wave Propagation in Tokamaks , 2004 .

[27]  G. Giruzzi,et al.  Progress in preparing scenarios for operation of the International Thermonuclear Experimental Reactor , 2015 .

[28]  M. Rosenbluth,et al.  Model for the sawtooth period and amplitude , 1996 .

[29]  L. D. Pearlstein,et al.  The National Transport Code Collaboration Module Library , 2004, Comput. Phys. Commun..

[30]  K. H. Burrell,et al.  Flow shear induced fluctuation suppression in finite aspect ratio shaped tokamak plasma , 1995 .

[31]  D. McCune,et al.  New techniques for calculating heat and particle source rates due to neutral beam injection in axisymmetric tokamaks , 1981 .

[32]  C. Kessel,et al.  Simulation of the hybrid and steady state advanced operating modes in ITER , 2007 .

[33]  G. Bateman,et al.  Development of drift-resistive-inertial ballooning transport model for tokamak edge plasmas , 2010 .

[34]  T. Aniel,et al.  Electron transport in Tore Supra with fast wave electron heating , 1999 .