Online contact impedance identification for robotic systems

In this paper, we study the performance of various algorithms for fast online identification of environment impedance during robotic contact tasks. In particular, we evaluate and compare algorithms with regard to their convergence rate, computational complexity and sensitivity to noise for different environments using a single degree-of-freedom experimental setup. The results provide some guidelines for choosing an appropriate identification algorithm for a specific application.

[1]  B. Pasik-Duncan,et al.  Adaptive Control , 1996, IEEE Control Systems.

[2]  Ali H. Sayed,et al.  Mean-square performance of data-reusing adaptive algorithms , 2005, IEEE Signal Processing Letters.

[3]  Youmin Zhang,et al.  A novel variable‐length sliding window blockwise least‐squares algorithm for on‐line estimation of time‐varying parameters , 2004 .

[4]  R. Sutton Gain Adaptation Beats Least Squares , 2006 .

[5]  Stefano Stramigioli,et al.  Contact impedance estimation for robotic systems , 2005, IEEE Trans. Robotics.

[6]  Homayoun Seraji,et al.  Force Tracking in Impedance Control , 1997, Int. J. Robotics Res..

[7]  Septimiu E. Salcudean,et al.  Adaptive transparent impedance reflecting teleoperation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[8]  Keyvan Hashtrudi-Zaad,et al.  A new robust stability analysis and design tool for bilateral teleoperation control systems , 2008, 2008 IEEE International Conference on Robotics and Automation.

[9]  Allison M. Okamura,et al.  Environment Parameter Estimation during Bilateral Telemanipulation , 2006, 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[10]  K. Hashtrudi-Zaad,et al.  A new fast online identification method for linear time-varying systems , 2008, 2008 American Control Conference.

[11]  Dong-Jo Park,et al.  Selfperturbing recursive least squares algorithm with fast tracking capability , 1992 .

[12]  John M. Hollerbach,et al.  Identification of nonlinear passive devices for haptic simulations , 2005, First Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. World Haptics Conference.

[13]  Inna Sharf,et al.  Contact Stiffness and Damping Estimation for Robotic Systems , 2003, Int. J. Robotics Res..

[14]  Stefano Stramigioli,et al.  Contact impedance estimation for robotic systems , 2004, IEEE Transactions on Robotics.

[15]  Wayne J. Book,et al.  Environment estimation for enhanced impedance control , 1995, Proceedings of 1995 IEEE International Conference on Robotics and Automation.

[16]  Dan O. Popa,et al.  An analysis of some fundamental problems in adaptive control of force and impedance behavior: theory and experiments , 1995, IEEE Trans. Robotics Autom..

[17]  Bernard Widrow,et al.  The least mean fourth (LMF) adaptive algorithm and its family , 1984, IEEE Trans. Inf. Theory.

[18]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .