Optimizing walking controllers

This paper describes a method for optimizing the parameters of a physics-based controller for full-body, 3D walking. A modified version of the SIMBICON controller [Yin et al. 2007] is optimized for characters of varying body shape, walking speed and step length. The objective function includes terms for power minimization, angular momentum minimization, and minimal head motion, among others. Together these terms produce a number of important features of natural walking, including active toe-off, near-passive knee swing, and leg extension during swing. We explain the specific form of our objective criteria, and show the importance of each term to walking style. We demonstrate optimized controllers for walking with different speeds, variation in body shape, and in ground slope.

[1]  A. Garrod Animal Locomotion , 1874, Nature.

[2]  Andrew P. Witkin,et al.  Spacetime constraints , 1988, SIGGRAPH.

[3]  Michiel van de Panne,et al.  Sensor-actuator networks , 1993, SIGGRAPH.

[4]  Karl Sims,et al.  Evolving virtual creatures , 1994, SIGGRAPH.

[5]  Jessica K. Hodgins,et al.  Simulation of Human Diving , 1994 .

[6]  Michiel van de Panne,et al.  Guided Optimization for Balanced Locomotion , 1995 .

[7]  Demetri Terzopoulos,et al.  Automated learning of muscle-actuated locomotion through control abstraction , 1995, SIGGRAPH.

[8]  Eugene Fiume,et al.  Limit cycle control and its application to the animation of balancing and walking , 1996, SIGGRAPH.

[9]  Jessica K. Hodgins,et al.  Adapting simulated behaviors for new characters , 1997, SIGGRAPH.

[10]  Novacheck,et al.  The biomechanics of running. , 1998, Gait & posture.

[11]  Geoffrey E. Hinton,et al.  NeuroAnimator: fast neural network emulation and control of physics-based models , 1998, SIGGRAPH.

[12]  Y. Li,et al.  Free vertical moments and transverse forces in human walking and their role in relation to arm-swing. , 2001, The Journal of experimental biology.

[13]  M. Pandy,et al.  Dynamic optimization of human walking. , 2001, Journal of biomechanical engineering.

[14]  Petros Faloutsos,et al.  Composable controllers for physics-based character animation , 2001, SIGGRAPH.

[15]  R. McNeill Alexander,et al.  Principles of Animal Locomotion , 2002 .

[16]  H. Sebastian Seung,et al.  Stochastic policy gradient reinforcement learning on a simple 3D biped , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[17]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[18]  A. Berthoz,et al.  Head stabilization during various locomotor tasks in humans , 1990, Experimental Brain Research.

[19]  C. Karen Liu,et al.  Learning physics-based motion style with nonlinear inverse optimization , 2005, ACM Trans. Graph..

[20]  Michiel van de Panne,et al.  Synthesis of Controllers for Stylized Planar Bipedal Walking , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[21]  Russ Tedrake,et al.  Efficient Bipedal Robots Based on Passive-Dynamic Walkers , 2005, Science.

[22]  Nikolaus Hansen,et al.  The CMA Evolution Strategy: A Comparing Review , 2006, Towards a New Evolutionary Computation.

[23]  Taku Komura,et al.  Stepping motion for a human-like character to maintain balance against large perturbations , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[24]  Jehee Lee,et al.  Simulating biped behaviors from human motion data , 2007, SIGGRAPH 2007.

[25]  Jun-Ho Oh,et al.  Walking Control Algorithm of Biped Humanoid Robot on Uneven and Inclined Floor , 2007, J. Intell. Robotic Syst..

[26]  M. V. D. Panne,et al.  SIMBICON: simple biped locomotion control , 2007, SIGGRAPH 2007.

[27]  Philippe Beaudoin,et al.  Continuation methods for adapting simulated skills , 2008, ACM Trans. Graph..

[28]  Marco da Silva,et al.  Interactive simulation of stylized human locomotion , 2008, ACM Trans. Graph..

[29]  Marko B. Popovic,et al.  Angular momentum in human walking , 2008, Journal of Experimental Biology.

[30]  Philippe Beaudoin,et al.  Synthesis of constrained walking skills , 2008, SIGGRAPH Asia '08.

[31]  K. Wampler,et al.  Optimal gait and form for animal locomotion , 2009, SIGGRAPH 2009.

[32]  Zoran Popović,et al.  Contact-aware nonlinear control of dynamic characters , 2009, SIGGRAPH 2009.

[33]  Victor B. Zordan,et al.  Momentum control for balance , 2009, SIGGRAPH 2009.

[34]  Tong-Yee Lee,et al.  Real-Time Physics-Based 3D Biped Character Animation Using an Inverted Pendulum Model , 2010, IEEE Transactions on Visualization and Computer Graphics.