Optimal Control of Hybrid Systems Using a Feedback Relaxed Control Formulation

We present a numerically tractable formulation for computing the optimal control of the class of hybrid dynamical systems whose trajectories are continuous. Our formulation, an extension of existing relaxed-control techniques for switched dynamical systems, incorporates the domain information of each discrete mode as part of the constraints in the optimization problem. Moreover, our numerical results are consistent with phenomena that are particular to hybrid systems, such as the creation of sliding trajectories between discrete modes.

[1]  S. Shankar Sastry,et al.  A descent algorithm for the optimal control of constrained nonlinear switched dynamical systems , 2010, HSCC '10.

[2]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[3]  Magnus Egerstedt,et al.  Optimal Control of Switching Surfaces in Hybrid Dynamical Systems , 2005, Discret. Event Dyn. Syst..

[4]  Chenyang Lu,et al.  Incorporating emergency alarms in reliable wireless process control , 2015, ICCPS.

[5]  Christos G. Cassandras,et al.  Hybrid Controllers for Hierarchically Decomposed Systems , 2000, HSCC.

[6]  I. Michael Ross,et al.  A pseudospectral method for the optimal control of constrained feedback linearizable systems , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[7]  Jörg Raisch,et al.  On the Maximum Principle for Impulsive Hybrid Systems , 2008, HSCC.

[8]  Xuping Xu,et al.  Optimal control of switched autonomous systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[9]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[10]  L. S. Pontryagin,et al.  Mathematical Theory of Optimal Processes , 1962 .

[11]  M. Branicky Multiple Lyapunov functions and other analysis tools for switched and hybrid systems , 1998, IEEE Trans. Autom. Control..

[12]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[13]  Aaron D. Ames,et al.  Human-Inspired Control of Bipedal Walking Robots , 2014, IEEE Transactions on Automatic Control.

[14]  Erik I. Verriest,et al.  Gradient Descent Approach to Optimal Mode Scheduling in Hybrid Dynamical Systems , 2008 .

[15]  E. Polak,et al.  Relaxed Controls and the Convergence of Optimal Control Algorithms , 1976 .

[16]  Steepest Descent with Relaxed Controls , 1977 .

[17]  J. Warga Optimal control of differential and functional equations , 1972 .

[18]  Mato Baotic,et al.  Hybrid Systems Modeling and Control , 2003, Eur. J. Control.

[19]  Claire J. Tomlin,et al.  Applications of hybrid reachability analysis to robotic aerial vehicles , 2011, Int. J. Robotics Res..

[20]  Y. Wardi,et al.  Algorithm for optimal mode scheduling in switched systems , 2012, 2012 American Control Conference (ACC).

[21]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[22]  W. P. M. H. Heemels,et al.  The Complementarity Class of Hybrid Dynamical Systems , 2003, Eur. J. Control.

[23]  W. Ziemer Weakly differentiable functions , 1989 .

[24]  S. Shankar Sastry,et al.  Consistent Approximations for the Optimal Control of Constrained Switched Systems - Part 1: A Conceptual Algorithm , 2013, SIAM J. Control. Optim..

[25]  S. Shankar Sastry,et al.  Consistent Approximations for the Optimal Control of Constrained Switched Systems - Part 2: An Implementable Algorithm , 2013, SIAM J. Control. Optim..

[26]  M. Egerstedt,et al.  On the regularization of Zeno hybrid automata , 1999 .

[27]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[28]  Peter E. Caines,et al.  On the Optimal Control of Hybrid Systems: Optimization of Trajectories, Switching Times, Location Schedules , 2003, HSCC.

[29]  Peter E. Caines,et al.  On the Hybrid Optimal Control Problem: Theory and Algorithms , 2007, IEEE Transactions on Automatic Control.

[30]  S. Shankar Sastry,et al.  A numerical method for the optimal control of switched systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[31]  H. Sussmann A nonsmooth hybrid maximum principle , 1999 .

[32]  Aaron D. Ames,et al.  On the existence of Zeno behavior in hybrid systems with non-isolated Zeno equilibria , 2008, 2008 47th IEEE Conference on Decision and Control.

[33]  H. Sussmann,et al.  A maximum principle for hybrid optimal control problems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).