Role of disorder in the synthesis of metastable zinc zirconium nitrides

In materials science, it is often assumed that ground-state crystal structures predicted by density functional theory are the easiest polymorphs to synthesize. Ternary nitride materials, with many possible metastable polymorphs, provide a rich materials space to study what influences thermodynamic stability and polymorph synthesizability. For example, ZnZrN 2 is theoretically predicted at zero Kelvin to have an unusual layered “wurtsalt” ground-state crystal structure with compelling optoelectronic properties, but it is unknown whether this structure can be realized experimentally under practical synthesis conditions. Here, we use combinatorial sputtering to synthesize hundreds of Zn x Zr 1 − x N y thin-film samples, and find metastable rocksalt-derived or boron-nitride-derived structures rather than the predicted wurtsalt structure. Using a statistical polymorph sampler approach, it is demonstrated that although rocksalt is the least stable polymorph at zero Kelvin, it becomes the most stable polymorph at high effective temperatures similar to those achieved using this sputter deposition method, and thus corroborates experimental results. Additional calculations show that this destabilization of the wurtsalt polymorph is due to configurational entropic and enthalpic effects, and that vibrational contributions are negligible. Specifically, rocksalt- and boron-nitride-derived structures become the most stable polymorphs in the presence of disorder because of higher tolerances to cation cross substitution and off stoichiometry than the wurtsalt structure. This understanding of the role of disorder tolerance in the synthesis of competing polymorphs can enable more accurate predictions of synthesizable crystal structures and their achievable material properties.

[1]  S. Lany,et al.  Computational discovery of stable and metastable ternary oxynitrides. , 2021, The Journal of chemical physics.

[2]  S. Lany,et al.  Probing configurational disorder in ZnGeN2 using cluster-based Monte Carlo , 2021 .

[3]  Matthew K. Horton,et al.  Promises and perils of computational materials databases , 2021, Nature Computational Science.

[4]  E. Toberer,et al.  Ternary Nitride Materials: Fundamentals and Emerging Device Applications , 2020, Annual Review of Materials Research.

[5]  Carlo De Santo,et al.  AFLOW-XtalFinder: a reliable choice to identify crystalline prototype , 2020, npj Computational Materials.

[6]  G. Brennecka,et al.  Utilizing Site Disorder in the Development of New Energy-Relevant Semiconductors , 2020 .

[7]  S. Lany,et al.  Combinatorial synthesis of magnesium tin nitride semiconductors. , 2020, Journal of the American Chemical Society.

[8]  K. Persson,et al.  Origin of Disorder Tolerance in Piezoelectric Materials and Design of Polar Systems , 2020, Chemistry of Materials.

[9]  S. Lany,et al.  Perfect short-range ordered alloy with line-compound-like properties in the ZnSnN2:ZnO system , 2020, npj Computational Materials.

[10]  T. Taniguchi,et al.  Synthesis of a Novel Rocksalt-Type Ternary Nitride Semiconductor MgSnN2 Using the Metathesis Reaction Under High Pressure , 2019, European Journal of Inorganic Chemistry.

[11]  B. Gorman,et al.  Combinatorial Tuning of Structural and Optoelectronic Properties in Cu Zn1−S , 2019, Matter.

[12]  G. Ceder,et al.  Zn2SbN3: growth and characterization of a metastable photoactive semiconductor , 2019, Materials Horizons.

[13]  G. Ceder,et al.  Rationalizing accurate structure prediction in the meta-GGA SCAN functional , 2019, Physical Review B.

[14]  Ahmad W. Huran,et al.  Large-Scale Benchmark of Exchange–Correlation Functionals for the Determination of Electronic Band Gaps of Solids , 2019, Journal of chemical theory and computation.

[15]  S. Lany,et al.  Thin Film Synthesis of Semiconductors in the Mg–Sb–N Materials System , 2019, Chemistry of Materials.

[16]  G. Brennecka,et al.  COMBIgor: Data-Analysis Package for Combinatorial Materials Science. , 2019, ACS combinatorial science.

[17]  V. Stevanović,et al.  The glassy solid as a statistical ensemble of crystalline microstates , 2019, npj Computational Materials.

[18]  B. Wagner,et al.  AlScN: A III-V semiconductor based ferroelectric , 2018, Journal of Applied Physics.

[19]  G. Ceder,et al.  Ternary nitride semiconductors in the rocksalt crystal structure , 2018, Proceedings of the National Academy of Sciences.

[20]  Gerbrand Ceder,et al.  A map of the inorganic ternary metal nitrides , 2018, Nature Materials.

[21]  Angela N. Fioretti,et al.  Exciton photoluminescence and benign defect complex formation in zinc tin nitride , 2018 .

[22]  S. Phillpot,et al.  Entropy contributions to phase stability in binary random solid solutions , 2018, npj Computational Materials.

[23]  Muratahan Aykol,et al.  Network analysis of synthesizable materials discovery , 2018, Nature Communications.

[24]  John D. Perkins,et al.  An open experimental database for exploring inorganic materials , 2018, Scientific Data.

[25]  James J. Steffes,et al.  Negative-pressure polymorphs made by heterostructural alloying , 2018, Science Advances.

[26]  Muratahan Aykol,et al.  Thermodynamic limit for synthesis of metastable inorganic materials , 2018, Science Advances.

[27]  Christopher J. Bartel,et al.  Redox-Mediated Stabilization in Zinc Molybdenum Nitrides. , 2018, Journal of the American Chemical Society.

[28]  V. Stevanović,et al.  Polymorphism in elemental silicon: Probabilistic interpretation of the realizability of metastable structures , 2017, 1708.09026.

[29]  Gerbrand Ceder,et al.  Thermodynamic Routes to Novel Metastable Nitrogen-Rich Nitrides , 2017 .

[30]  Angela N. Fioretti,et al.  Monte Carlo Simulations of Disorder in ZnSnN2 and the Effects on the Electronic Structure , 2017 .

[31]  Angela N. Fioretti,et al.  Synthesis, structure, and optoelectronic properties of II–IV–V2 materials , 2017 .

[32]  Q. Zeng,et al.  First-principles study of Zr–N crystalline phases: phase stability, electronic and mechanical properties , 2017 .

[33]  R. Armiento,et al.  Strong piezoelectric response in stable TiZnN2, ZrZnN2, and HfZnN2 found by ab initio high-throughput approach , 2016 .

[34]  S. Ong,et al.  The thermodynamic scale of inorganic crystalline metastability , 2016, Science Advances.

[35]  Yoyo Hinuma,et al.  Discovery of earth-abundant nitride semiconductors by computational screening and high-pressure synthesis , 2016, Nature Communications.

[36]  David Vanderbilt,et al.  Correct implementation of polarization constants in wurtzite materials and impact on III-nitrides , 2016, 1605.07629.

[37]  Jacob L. Jones,et al.  Entropy-stabilized oxides , 2015, Nature Communications.

[38]  V. Stevanović Sampling Polymorphs of Ionic Solids using Random Superlattices. , 2015, Physical review letters.

[39]  S. Lany Semiconducting transition metal oxides , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.

[40]  I. Tanaka,et al.  First principles phonon calculations in materials science , 2015, 1506.08498.

[41]  Grant T. Junno,et al.  Charge-neutral disorder and polytypes in heterovalent wurtzite-based ternary semiconductors: The importance of the octet rule , 2015 .

[42]  Adrienn Ruzsinszky,et al.  Strongly Constrained and Appropriately Normed Semilocal Density Functional. , 2015, Physical review letters.

[43]  Angela N. Fioretti,et al.  Combinatorial insights into doping control and transport properties of zinc tin nitride , 2015, 1504.01819.

[44]  David S. Ginley,et al.  Thin film synthesis and properties of copper nitride, a metastable semiconductor , 2014 .

[45]  M. Toney,et al.  Control of the Electrical Properties in Spinel Oxides by Manipulating the Cation Disorder , 2014 .

[46]  Ryan O'Hayre,et al.  Non-equilibrium deposition of phase pure Cu2O thin films at reduced growth temperature , 2014 .

[47]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[48]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[49]  Ichiro Takeuchi,et al.  Applications of high throughput (combinatorial) methodologies to electronic, magnetic, optical, and energy-related materials , 2013 .

[50]  S. Lany Band-Structure Calculations for the 3d Transition Metal Oxides in GW , 2013 .

[51]  Anubhav Jain,et al.  Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis , 2012 .

[52]  Vladan Stevanović,et al.  Correcting Density Functional Theory for Accurate Predictions of Compound Enthalpies of Formation:Fitted elemental-phase Reference Energies (FERE) , 2012 .

[53]  A. Oganov,et al.  How evolutionary crystal structure prediction works--and why. , 2011, Accounts of chemical research.

[54]  Chris J Pickard,et al.  Ab initio random structure searching , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  Anubhav Jain,et al.  Data mined ionic substitutions for the discovery of new compounds. , 2011, Inorganic chemistry.

[56]  D. Scanlon,et al.  Stability, geometry, and electronic structure of an alternative I-III-VI2 material, CuScS2: A hybrid density functional theory analysis , 2010 .

[57]  Xinlu Cheng,et al.  First‐principles study of the structural and electronic properties of the cubic Zr3N4 under high pressure , 2010 .

[58]  Axel van de Walle,et al.  Multicomponent multisublattice alloys, nonconfigurational entropy and other additions to the Alloy Theoretic Automated Toolkit , 2009, 0906.1608.

[59]  S. Woodley,et al.  Crystal structure prediction from first principles. , 2008, Nature materials.

[60]  P. Kroll Pathways to metastable nitride structures , 2003 .

[61]  S. Limpijumnong,et al.  Theoretical study of the relative stability of wurtzite and rocksalt phases in MgO and GaN , 2001 .

[62]  M. Rosseinsky,et al.  Structure of Zr2ON2 by Neutron Powder Diffraction: The Absence of Nitride–Oxide Ordering , 1999 .

[63]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[64]  D. E. Partin,et al.  The Crystal Structures of Mg3N2and Zn3N2 , 1997 .

[65]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[66]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[67]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[68]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[69]  Ferreira,et al.  Special quasirandom structures. , 1990, Physical review letters.

[70]  A. Zakutayev,et al.  Composition, structure, and semiconducting properties of Mg x Zr 2 x N 2 thin films , 2019 .

[71]  S. Chaiyakun,et al.  Variation of color in Zirconium nitride thin films prepared at high Ar flow rates with reactive dc magnetron sputtering , 2012 .

[72]  R. T. Smith,et al.  Physical properties and crystal structure of a new semiconducting I–III–VI2 compound, CuScS2 , 1971 .