Shifting from region of interest (ROI) to voxel-based analysis in human brain mapping

[1]  Ginny Allain,et al.  Personalized medicine. , 2012, MLO: medical laboratory observer.

[2]  T. Matsuishi,et al.  Regional cerebral blood flow changes in early-onset anorexia nervosa before and after weight gain , 2010, Brain and Development.

[3]  L. Astrakas,et al.  Voxel‐Based Morphometry and Voxel‐Based Relaxometry in Parkinsonian Variant of Multiple System Atrophy , 2009, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[4]  L. Ment,et al.  Imaging biomarkers of outcome in the developing preterm brain , 2009, The Lancet Neurology.

[5]  P. Kosta,et al.  Age-related grey matter changes in preterm infants: An MRI study , 2009, NeuroImage.

[6]  T. Autti,et al.  Subjects With Intellectual Disability and Familial Need for Full-Time Special Education Show Regional Brain Alterations: A Voxel-Based Morphometry Study , 2009, Pediatric Research.

[7]  Richard J. Caselli,et al.  Linking functional and structural brain images with multivariate network analyses: A novel application of the partial least square method , 2009, NeuroImage.

[8]  A Depeursinge,et al.  Clinical Data Mining: a Review , 2009, Yearbook of Medical Informatics.

[9]  Michael J. Brammer,et al.  A parametric approach to voxel-based meta-analysis , 2009, NeuroImage.

[10]  Jörn Diedrichsen,et al.  A probabilistic MR atlas of the human cerebellum , 2009, NeuroImage.

[11]  Jessica A. Turner,et al.  Neuroinformatics Original Research Article , 2022 .

[12]  M. Koçak Advanced imaging in paediatric neuroradiology , 2009, Pediatric Radiology.

[13]  Bruce I. Reiner,et al.  The Clinical Imperative of Medical Imaging Informatics , 2009, Journal of Digital Imaging.

[14]  Mark W. Woolrich,et al.  Combined spatial and non-spatial prior for inference on MRI time-series , 2009, NeuroImage.

[15]  et al.,et al.  The Effect of Template Choice on Morphometric Analysis of Pediatric Brain Data ☆ , 2022 .

[16]  Vince D. Calhoun,et al.  A review of group ICA for fMRI data and ICA for joint inference of imaging, genetic, and ERP data , 2009, NeuroImage.

[17]  Mark W. Woolrich,et al.  Bayesian analysis of neuroimaging data in FSL , 2009, NeuroImage.

[18]  J. Molinuevo,et al.  Interactions of cognitive reserve with regional brain anatomy and brain function during a working memory task in healthy elders , 2009, Biological Psychology.

[19]  Moo K. Chung,et al.  A study of diffusion tensor imaging by tissue-specific, smoothing-compensated voxel-based analysis , 2009, NeuroImage.

[20]  Scott Holland,et al.  Infant brain probability templates for MRI segmentation and normalization , 2008, NeuroImage.

[21]  R. Grebe,et al.  Neonatal probabilistic models for brain, CSF and skull using T1-MRI data: Preliminary results , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[22]  S. Rombouts,et al.  No structural cerebral differences between children with a history of bacterial meningitis and healthy siblings , 2008, Acta paediatrica.

[23]  W. Post Using and understanding medical statistics (4th edn). David E. Matthews and Vernon T. Farewell, Karger, Basel, 2007. No. of pages: XX+322. Price: CHF 49.00, EUR 35.00, $44.00. ISBN: 978‐3‐8055‐8189‐9 , 2008 .

[24]  Daniel C Sullivan,et al.  Imaging as a quantitative science. , 2008, Radiology.

[25]  Madison M Berl,et al.  Pediatric Functional Magnetic Resonance Imaging (fMRI): Issues and Applications , 2008, Journal of child neurology.

[26]  Hidenao Fukuyama,et al.  Cerebral infarction associated with moyamoya disease: histogram-based quantitative analysis of diffusion tensor imaging -- a preliminary study. , 2008, Magnetic resonance imaging.

[27]  Scott Holland,et al.  Template-O-Matic: A toolbox for creating customized pediatric templates , 2008, NeuroImage.

[28]  E. Russell Ritenour,et al.  Principles and Advanced Methods in Medical Imaging and Image Analysis , 2008, American Journal of Neuroradiology.

[29]  R. Kraft,et al.  Relating imaging indices of white matter integrity and volume in healthy older adults. , 2008, Cerebral cortex.

[30]  Arthur W. Toga,et al.  Construction of a 3D probabilistic atlas of human cortical structures , 2008, NeuroImage.

[31]  Mark Holden,et al.  A Review of Geometric Transformations for Nonrigid Body Registration , 2008, IEEE Transactions on Medical Imaging.

[32]  Karl J. Friston,et al.  Voxel-Based Morphometry , 2015 .

[33]  F. Cendes,et al.  Distribution of regional gray matter abnormalities in a pediatric population with temporal lobe epilepsy and correlation with neuropsychological performance , 2007, Epilepsy & Behavior.

[34]  Xu Chen,et al.  Bayesian Kernel Methods for Analysis of Functional Neuroimages , 2007, IEEE Transactions on Medical Imaging.

[35]  John M Boone,et al.  Radiological interpretation 2020: toward quantitative image assessment. , 2007, Medical physics.

[36]  Suyash P. Awate,et al.  Clinical Neonatal Brain MRI Segmentation Using Adaptive Nonparametric Data Models and Intensity-Based Markov Priors , 2007, MICCAI.

[37]  Glyn Johnson,et al.  Comparison of region‐of‐interest analysis with three different histogram analysis methods in the determination of perfusion metrics in patients with brain gliomas , 2007, Journal of magnetic resonance imaging : JMRI.

[38]  Hamid Abrishami Moghaddam,et al.  A neonatal atlas template for spatial normalization of whole-brain magnetic resonance images of newborns: Preliminary results , 2007, NeuroImage.

[39]  J. Soliva,et al.  Pediatric OCD structural brain deficits in conflict monitoring circuits: A voxel-based morphometry study , 2007, Neuroscience Letters.

[40]  G Johnson,et al.  Histogram analysis versus region of interest analysis of dynamic susceptibility contrast perfusion MR imaging data in the grading of cerebral gliomas. , 2007, AJNR. American journal of neuroradiology.

[41]  Ramon Casanova,et al.  Biological parametric mapping: A statistical toolbox for multimodality brain image analysis , 2007, NeuroImage.

[42]  A. Ardila,et al.  WHAT CAN BE LOCALIZED IN THE BRAIN? TOWARD A “FACTOR” THEORY ON BRAIN ORGANIZATION OF COGNITION , 2007, The International journal of neuroscience.

[43]  Christian Beaulieu,et al.  Voxel based versus region of interest analysis in diffusion tensor imaging of neurodevelopment , 2007, NeuroImage.

[44]  Karl J. Friston,et al.  Statistical parametric mapping , 2013 .

[45]  M. Argyropoulou,et al.  Non-arteritic anterior ischaemic optic neuropathy: evaluation of the brain and optic pathway by conventional MRI and magnetisation transfer imaging , 2007, European Radiology.

[46]  Olivier Faugeras,et al.  Using nonlinear models in fMRI data analysis: Model selection and activation detection , 2006, NeuroImage.

[47]  Maria Argyropoulou,et al.  Myelination process in preterm subjects with periventricular leucomalacia assessed by magnetization transfer ratio , 2006, Pediatric Radiology.

[48]  Simon K. Warfield,et al.  Segmentation of newborn brain MRI , 2006, 3rd IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2006..

[49]  M. van Buchem,et al.  Whole brain magnetization transfer histogram analysis of pediatric acute lymphoblastic leukemia patients receiving intrathecal methotrexate therapy. , 2006, European journal of radiology.

[50]  Serena J Counsell,et al.  Differential brain growth in the infant born preterm: current knowledge and future developments from brain imaging. , 2005, Seminars in fetal & neonatal medicine.

[51]  John H. Gilmore,et al.  Automatic segmentation of MR images of the developing newborn brain , 2005, Medical Image Anal..

[52]  H. Engeland,et al.  Variability in spatial normalization of pediatric and adult brain images , 2005, Clinical Neurophysiology.

[53]  Karl J. Friston Models of brain function in neuroimaging. , 2005, Annual review of psychology.

[54]  Jen-Chuen Hsieh,et al.  Toward normal perfusion after radiosurgery: perfusion MR Imaging with independent component analysis of brain arteriovenous malformations. , 2004, AJNR. American journal of neuroradiology.

[55]  Christos Davatzikos,et al.  Why voxel-based morphometric analysis should be used with great caution when characterizing group differences , 2004, NeuroImage.

[56]  Gaby S Pell,et al.  Voxel-based relaxometry: a new approach for analysis of T2 relaxometry changes in epilepsy , 2004, NeuroImage.

[57]  Ralph B. D'Agostino,et al.  Statistical modelling of complex medical data , 2004 .

[58]  J M Brady,et al.  Image filtering techniques for medical image post-processing: an overview. , 2004, The British journal of radiology.

[59]  I. Wilkinson,et al.  Analysis of diffusion tensor magnetic resonance imaging data using principal component analysis. , 2003, Physics in medicine and biology.

[60]  M Wilke,et al.  Normative pediatric brain data for spatial normalization and segmentation differs from standard adult data , 2003, Magnetic resonance in medicine.

[61]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[62]  Friedrich T. Sommer,et al.  Exploratory analysis and data modeling in functional neuroimaging , 2003 .

[63]  Paul S. Tofts,et al.  Quantitative MRI of the brain : measuring changes caused by disease , 2003 .

[64]  J. Mazziotta,et al.  Brain Mapping: The Methods , 2002 .

[65]  Abraham Z. Snyder,et al.  The Feasibility of a Common Stereotactic Space for Children and Adults in fMRI Studies of Development , 2002, NeuroImage.

[66]  Marko Wilke,et al.  Assessment of spatial normalization of whole‐brain magnetic resonance images in children , 2002, Human brain mapping.

[67]  Guinevere F. Eden,et al.  Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading: Method and Validation , 2002, NeuroImage.

[68]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Theory , 2002, NeuroImage.

[69]  Karl J. Friston,et al.  Classical and Bayesian Inference in Neuroimaging: Applications , 2002, NeuroImage.

[70]  F. Dammann,et al.  Bildverarbeitung in der Radiologie , 2002 .

[71]  Ray L. Somorjai,et al.  Exploratory data analysis in functional neuroimaging , 2002, Artif. Intell. Medicine.

[72]  Essa Yacoub,et al.  Node merging in Kohonen's self-organizing mapping of fMRI data , 2002, Artif. Intell. Medicine.

[73]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[74]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[75]  F. Dammann,et al.  [Image processing in radiology]. , 2002, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[76]  Fred L. Bookstein,et al.  “Voxel-Based Morphometry” Should Not Be Used with Imperfectly Registered Images , 2001, NeuroImage.

[77]  Karl J. Friston,et al.  Why Voxel-Based Morphometry Should Be Used , 2001, NeuroImage.

[78]  Karl J. Friston,et al.  Cerebral Asymmetry and the Effects of Sex and Handedness on Brain Structure: A Voxel-Based Morphometric Analysis of 465 Normal Adult Human Brains , 2001, NeuroImage.

[79]  J. Dehmeshki,et al.  Analysis of MTR histograms in multiple sclerosis using principal components and multiple discriminant analysis , 2001, Magnetic resonance in medicine.

[80]  J Mazziotta,et al.  A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[81]  Arnold W. M. Smeulders,et al.  Interaction in the segmentation of medical images: A survey , 2001, Medical Image Anal..

[82]  L W Doyle,et al.  Basic concepts of statistical reasoning: Hypothesis tests and the t‐test , 2001, Journal of paediatrics and child health.

[83]  The The Evidence-Based Radiology Workin Evidence-based radiology: a new approach to the practice of radiology. , 2001, Radiology.

[84]  M S Buchsbaum,et al.  Regional and global changes in cerebral diffusion with normal aging. , 2001, AJNR. American journal of neuroradiology.

[85]  Michael Unser,et al.  Optimization of mutual information for multiresolution image registration , 2000, IEEE Trans. Image Process..

[86]  O. Muzik,et al.  Statistical Parametric Mapping: Assessment of Application in Children , 2000, NeuroImage.

[87]  Colin Studholme,et al.  Accurate alignment of functional EPI data to anatomical MRI using a physics-based distortion model , 2000, IEEE Transactions on Medical Imaging.

[88]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[89]  G. Comi,et al.  Prognostic value of MR and magnetization transfer imaging findings in patients with clinically isolated syndromes suggestive of multiple sclerosis at presentation. , 2000, AJNR. American journal of neuroradiology.

[90]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[91]  Jerry L Prince,et al.  Current methods in medical image segmentation. , 2000, Annual review of biomedical engineering.

[92]  Thomas E. Nichols,et al.  Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[93]  Karl J. Friston,et al.  The slice-timing problem in event-related fMRI , 1999 .

[94]  D. Le Bihan,et al.  Slice Dependent Time Shift Efficiently Corrected by Interpolation in Multi-Slice EPI fMRI Series , 1998, NeuroImage.

[95]  T. Perneger What's wrong with Bonferroni adjustments , 1998, BMJ.

[96]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[97]  Karl J. Friston,et al.  Human Brain Function , 1997 .

[98]  D Le Bihan,et al.  Latencies in fMRI time‐series: effect of slice acquisition order and perception , 1997, NMR in biomedicine.

[99]  Richard M. Leahy,et al.  Surface-based labeling of cortical anatomy using a deformable atlas , 1997, IEEE Transactions on Medical Imaging.

[100]  C. Davatzikos Spatial normalization of 3D brain images using deformable models. , 1996, Journal of computer assisted tomography.

[101]  Demetri Terzopoulos,et al.  Deformable models in medical image analysis: a survey , 1996, Medical Image Anal..

[102]  J D Watson,et al.  Nonparametric Analysis of Statistic Images from Functional Mapping Experiments , 1996, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[103]  Paul M. Thompson,et al.  A surface-based technique for warping three-dimensional images of the brain , 1996, IEEE Trans. Medical Imaging.

[104]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[105]  Ramesh Jain,et al.  Introduction to Machine Vision , 1995 .

[106]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[107]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[108]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[109]  Karl J. Friston,et al.  The Relationship between Global and Local Changes in PET Scans , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[110]  J. Talairach,et al.  Co-Planar Stereotaxic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging , 1988 .

[111]  V. Farewell,et al.  Using and Understanding Medical Statistics , 1984 .