Fast linear iterations for distributed averaging

We consider the problem of finding a linear iteration that yields distributed averaging consensus over a network, i.e., that asymptotically computes the average of some initial values given at the nodes. When the iteration is assumed symmetric, the problem of finding the fastest converging linear iteration can be cast as a semidefinite program, and therefore efficiently and globally solved. These optimal linear iterations are often substantially faster than several simple heuristics that are based on the Laplacian matrix of the associated graph.

[1]  Arkadi Nemirovski,et al.  Lectures on modern convex optimization - analysis, algorithms, and engineering applications , 2001, MPS-SIAM series on optimization.

[2]  J. Hiriart-Urruty,et al.  Convex analysis and minimization algorithms , 1993 .

[3]  Editors , 1986, Brain Research Bulletin.

[4]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[5]  Aharon Ben-Tal,et al.  Lectures on modern convex optimization , 1987 .

[6]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[7]  Adrian S. Lewis,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[8]  N. Biggs Algebraic Graph Theory , 1974 .

[9]  J. Aplevich,et al.  Lecture Notes in Control and Information Sciences , 1979 .

[10]  C. D. Meyer,et al.  Convergent Powers of a Matrix With Applications to Iterative Methods for Singular Linear Systems , 1975 .

[11]  Michael L. Overton,et al.  Optimality conditions and duality theory for minimizing sums of the largest eigenvalues of symmetric matrices , 2015, Math. Program..

[12]  Xiong Zhang,et al.  Solving Large-Scale Sparse Semidefinite Programs for Combinatorial Optimization , 1999, SIAM J. Optim..

[13]  P. Rowlinson ALGEBRAIC GRAPH THEORY (Graduate Texts in Mathematics 207) By CHRIS GODSIL and GORDON ROYLE: 439 pp., £30.50, ISBN 0-387-95220-9 (Springer, New York, 2001). , 2002 .

[14]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[15]  R. Oldenburger,et al.  Infinite powers of matrices and characteristic roots , 1940 .

[16]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[17]  Stephen P. Boyd,et al.  Low-authority controller design via convex optimization , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[18]  Stephen P. Boyd,et al.  Symmetry Analysis of Reversible Markov Chains , 2005, Internet Math..

[19]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[20]  Arkadi Nemirovski,et al.  Prox-Method with Rate of Convergence O(1/t) for Variational Inequalities with Lipschitz Continuous Monotone Operators and Smooth Convex-Concave Saddle Point Problems , 2004, SIAM J. Optim..

[21]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[22]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[23]  Arkadi Nemirovski,et al.  Several NP-hard problems arising in robust stability analysis , 1993, Math. Control. Signals Syst..

[24]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[25]  Yinyu Ye,et al.  Interior point algorithms: theory and analysis , 1997 .

[26]  Richard M. Murray,et al.  Information flow and cooperative control of vehicle formations , 2004, IEEE Transactions on Automatic Control.

[27]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[28]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[29]  Thomas de Quincey [C] , 2000, The Works of Thomas De Quincey, Vol. 1: Writings, 1799–1820.

[30]  Michael L. Overton,et al.  Large-Scale Optimization of Eigenvalues , 1990, SIAM J. Optim..

[31]  Seif Haridi,et al.  Distributed Algorithms , 1992, Lecture Notes in Computer Science.

[32]  Stephen P. Boyd,et al.  Low-Authority Controller Design by Means of Convex Optimization , 1999 .

[33]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[34]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[35]  R. Merris Laplacian matrices of graphs: a survey , 1994 .

[36]  J. Tsitsiklis,et al.  NP-hardness of some linear control design problems , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[37]  Alexander Shapiro,et al.  On Eigenvalue Optimization , 1995, SIAM J. Optim..

[38]  Stephen P. Boyd,et al.  Fastest Mixing Markov Chain on a Graph , 2004, SIAM Rev..

[39]  M. Mesbahi On a dynamic extension of the theory of graphs , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[40]  M. Overton,et al.  On minimizing the spectral radius of a nonsymmetric matrix function: optimality conditions and duality theory , 1988 .

[41]  Yurii Nesterov,et al.  Interior-point polynomial algorithms in convex programming , 1994, Siam studies in applied mathematics.

[42]  R. Murray,et al.  Consensus protocols for networks of dynamic agents , 2003, Proceedings of the 2003 American Control Conference, 2003..

[43]  Stephen P. Boyd,et al.  Method of centers for minimizing generalized eigenvalues , 1993, Linear Algebra and its Applications.

[44]  K. Glover,et al.  Minimum entropy H ∞ control , 1990 .

[45]  Laurent El Ghaoui,et al.  Advances in linear matrix inequality methods in control: advances in design and control , 1999 .

[46]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[47]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[48]  J. Borwein,et al.  Convex Analysis And Nonlinear Optimization , 2000 .

[49]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..