Convergence of the Continuous Time Trajectories of Isotropic Evolution Strategies on Monotonic $\mathcal C^2$ -composite Functions
暂无分享,去创建一个
[1] Nikolaus Hansen,et al. A Derandomized Approach to Self-Adaptation of Evolution Strategies , 1994, Evolutionary Computation.
[2] H. Schwefel,et al. Analyzing (1; ) Evolution Strategy via Stochastic Approximation Methods , 1995 .
[3] H. Schwefel,et al. Establishing connections between evolutionary algorithms and stochastic approximation , 1995 .
[4] Rich Caruana,et al. Removing the Genetics from the Standard Genetic Algorithm , 1995, ICML.
[5] H. Thorisson. Coupling, stationarity, and regeneration , 2000 .
[6] Zbigniew Michalewicz,et al. Evolutionary Computation 2 , 2000 .
[7] Petros Koumoutsakos,et al. Reducing the Time Complexity of the Derandomized Evolution Strategy with Covariance Matrix Adaptation (CMA-ES) , 2003, Evolutionary Computation.
[8] H. Kushner,et al. Stochastic Approximation and Recursive Algorithms and Applications , 2003 .
[9] Anne Auger,et al. Convergence results for the (1, lambda)-SA-ES using the theory of phi-irreducible Markov chains , 2005, Theor. Comput. Sci..
[10] A. Auger. Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .
[11] Jens Jägersküpper,et al. Probabilistic runtime analysis of (1 +, λ),ES using isotropic mutations , 2006, GECCO '06.
[12] Jens Jägersküpper,et al. How the (1+1) ES using isotropic mutations minimizes positive definite quadratic forms , 2006, Theor. Comput. Sci..
[13] A. C. Brooms. Stochastic Approximation and Recursive Algorithms with Applications, 2nd edn by H. J. Kushner and G. G. Yin , 2006 .
[14] Jens Jägersküpper,et al. Algorithmic analysis of a basic evolutionary algorithm for continuous optimization , 2007, Theor. Comput. Sci..
[15] V. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint , 2008 .
[16] Tom Schaul,et al. Exponential natural evolution strategies , 2010, GECCO '10.
[17] Isao Ono,et al. Theoretical Foundation for CMA-ES from Information Geometry Perspective , 2012, Algorithmica.
[18] Matteo Matteucci,et al. Towards the geometry of estimation of distribution algorithms based on the exponential family , 2011, FOGA '11.
[19] Silvere Bonnabel,et al. Stochastic Gradient Descent on Riemannian Manifolds , 2011, IEEE Transactions on Automatic Control.
[20] P. Olver. Nonlinear Systems , 2013 .