Robust control design via game theoretic methods

The importance of game theoretic formulations in designing robust controllers has resurfaced in conjunction with advances in the H/sup infinity / problem. A survey is presented of several game theoretic results which are closely related and of potential value to robust controlled design. Using a game theoretic framework, the authors propose methods for robust control design in decentralized problems. It is shown that decentralized and certain multiobjective H/sup infinity / control problems can be handled by these methods.<<ETX>>

[1]  Michael G. Safonov,et al.  Multivariable L∞ sensitivity optimization and hankel approximation , 1983, 1983 American Control Conference.

[2]  M. Athans,et al.  Optimal limited state variable feedback controllers for linear systems , 1971 .

[3]  G. Zames Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses , 1981 .

[4]  Y. Ho Differential games, dynamic optimization, and generalized control theory , 1970 .

[5]  Imad M. Jaimoukha,et al.  All solutions to the four block general distance problem , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[6]  M. Safonov,et al.  Synthesis of positive real multivariable feedback systems , 1987 .

[7]  Some properties of the value matrix in infinite-time linear-quadratic differential games , 1978 .

[8]  D. Salmon,et al.  Minimax controller design , 1968 .

[9]  G. Zames,et al.  Feedback, minimax sensitivity, and optimal robustness , 1983 .

[10]  E. Mageirou Iterative techniques for Riccati game equations , 1977 .

[11]  P. Dorato,et al.  Optimallty, insensitivity, and game theory , 1964 .

[12]  Y. Ho,et al.  Further properties of nonzero-sum differential games , 1969 .

[13]  H. Witsenhausen A minimax control problem for sampled linear systems , 1968 .

[14]  Huibert Kwakernaak,et al.  Robustness optimization of linear feedback systems , 1983, The 22nd IEEE Conference on Decision and Control.

[15]  Z. Rekasius,et al.  On the solution of the optimal linear control problems under conflict of interest , 1971 .

[16]  Yu-Chi Ho,et al.  Decentralized stabilization via game theoretic methods , 1977, Autom..

[17]  J. Doyle,et al.  Linear control theory with an H ∞ 0E optimality criterion , 1987 .

[18]  N. Minamide,et al.  A note on the Ho-problem in hilbert space , 1971 .

[19]  J. Cruz,et al.  On the Stackelberg strategy in nonzero-sum games , 1973 .

[20]  George P. Papavassilopoulos,et al.  On the existence of solutions to coupled matrix Riccati differential equations in linear quadratic Nash games , 1979 .

[21]  D. Lukes,et al.  A GLOBAL THEORY FOR LINEAR QUADRATIC DIFFERENTIAL GAMES. , 1971 .

[22]  Stephen Boyd,et al.  Numerical Solution of a Two-disk Problem , 1989 .

[23]  Y. Ho,et al.  On a class of linear stochastic differential games , 1968 .

[24]  S. Richter A Homotopy Algorithm for Solving the Optimal Projection Equations for Fixed-Order Dynamic Compensation: Existence, Convergence and Global Optimality , 1987, 1987 American Control Conference.

[25]  G. Zames,et al.  H ∞ -optimal feedback controllers for linear multivariable systems , 1984 .

[26]  Y. Ho,et al.  Differential games and optimal pursuit-evasion strategies , 1965 .

[27]  L. Shapley,et al.  Stochastic Games* , 1953, Proceedings of the National Academy of Sciences.

[28]  T. Başar A counterexample in linear-quadratic games: Existence of nonlinear nash solutions , 1974 .

[29]  I. Petersen Disturbance attenuation and H^{∞} optimization: A design method based on the algebraic Riccati equation , 1987 .

[30]  Yu-Chi Ho,et al.  Optimal Terminal Maneuver and Evasion Strategy , 1966 .

[31]  D. Bernstein,et al.  The optimal projection equations for fixed-order dynamic compensation , 1984 .

[32]  D. Bertsekas,et al.  Sufficiently informative functions and the minimax feedback control of uncertain dynamic systems , 1973 .

[33]  Rufus Isaacs,et al.  Differential Games , 1965 .

[34]  D. Jacobson On values and strategies for infinite-time linear quadratic games , 1977 .

[35]  H. Meyer,et al.  The Matrix Equation $AZ + B - ZCZ - ZD = 0$ , 1976 .

[36]  M. Safonov,et al.  Simplifying the H/sup infinity / theory via loop shifting , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[37]  P. Khargonekar,et al.  State-space solutions to standard H2 and H∞ control problems , 1988, 1988 American Control Conference.

[38]  D. Luenberger,et al.  Stochastic differential games with constrained state estimators , 1969 .

[39]  G. Papavassilopoulos On the linear-quadratic-Gaussian Nash game with one-step delay observation sharing pattern , 1982 .

[40]  C. Chen,et al.  Stackelburg solution for two-person games with biased information patterns , 1972 .

[41]  J. Potter Matrix Quadratic Solutions , 1966 .

[42]  T. Başar Informationally Nonunique Equilibrium Solutions in Differential Games , 1977 .

[43]  K. Glover,et al.  State-space formulae for all stabilizing controllers that satisfy and H ∞ norm bound and relations to risk sensitivity , 1988 .

[44]  J. Medanic,et al.  Bounds on performance index and the Riccati equation in differential games , 1967, IEEE Transactions on Automatic Control.

[45]  Tamer Ba csar Two-criteria LQG decision problems with one-step delay observation sharing pattern , 1978 .

[46]  P. Khargonekar,et al.  H/sub infinity /-optimal control with state-feedback , 1988 .

[47]  J. Pearson,et al.  Optimal disturbance reduction in linear multivariable systems , 1983, The 22nd IEEE Conference on Decision and Control.

[48]  J. B. CruzJr.,et al.  On the existence of Nash strategies and solutions to coupled riccati equations in linear-quadratic games , 1979 .

[49]  D. Luenberger,et al.  Differential games with imperfect state information , 1969 .

[50]  A. Laub,et al.  Feedback properties of multivariable systems: The role and use of the return difference matrix , 1981 .

[51]  E. Mageirou Values and strategies for infinite time linear quadratic games , 1976 .

[52]  Two countable systems of differential inequalities with applications to the stability of linear quadratic differential games , 1970 .

[53]  J. Cruz,et al.  Additional aspects of the Stackelberg strategy in nonzero-sum games , 1973 .

[54]  D. Lukes Equilibrium Feedback Control in Linear Games with Quadratic Costs , 1971 .

[55]  S. Parrott,et al.  On a quotient norm and the Sz.-Nagy-Foiaş lifting theorem , 1978 .

[56]  T. Başar Decentralized multicriteria optimization of linear stochastic systems , 1978 .

[57]  Y. Ho,et al.  Nonzero-sum differential games , 1969 .

[58]  P. Khargonekar,et al.  An algebraic Riccati equation approach to H ∞ optimization , 1988 .

[59]  Edmond A. Jonckheere,et al.  L∞-compensation with mixed sensitivity as a broadband matching problem , 1984 .

[60]  Akira Ichikawa Linear Quadratic Differential Games in a Hilbert Space , 1976 .

[61]  P. Khargonekar,et al.  State-space solutions to standard H/sub 2/ and H/sub infinity / control problems , 1989 .