Characterizing SLAM Benchmarks and Methods for the Robust Perception Age

The diversity of SLAM benchmarks affords extensive testing of SLAM algorithms to understand their performance, individually or in relative terms. The ad-hoc creation of these benchmarks does not necessarily illuminate the particular weak points of a SLAM algorithm when performance is evaluated. In this paper, we propose to use a decision tree to identify challenging benchmark properties for state-of-the-art SLAM algorithms and important components within the SLAM pipeline regarding their ability to handle these challenges. Establishing what factors of a particular sequence lead to track failure or degradation relative to these characteristics is important if we are to arrive at a strong understanding for the core computational needs of a robust SLAM algorithm. Likewise, we argue that it is important to profile the computational performance of the individual SLAM components for use when benchmarking. In particular, we advocate the use of time-dilation during ROS bag playback, or what we refer to as slo-mo playback. Using slo-mo to benchmark SLAM instantiations can provide clues to how SLAM implementations should be improved at the computational component level. Three prevalent VO/SLAM algorithms and two low-latency algorithms of our own are tested on selected typical sequences, which are generated from benchmark characterization, to further demonstrate the benefits achieved from computationally efficient components.

[1]  Michael F. P. O'Boyle,et al.  Introducing SLAMBench, a performance and accuracy benchmarking methodology for SLAM , 2014, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Sertac Karaman,et al.  The Blackbird Dataset: A large-scale dataset for UAV perception in aggressive flight , 2018, ISER.

[3]  Wolfram Burgard,et al.  A benchmark for the evaluation of RGB-D SLAM systems , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[4]  Andrew J. Davison,et al.  A benchmark for RGB-D visual odometry, 3D reconstruction and SLAM , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[5]  Ryan M. Eustice,et al.  Ford Campus vision and lidar data set , 2011, Int. J. Robotics Res..

[6]  Jason M. O'Kane,et al.  Experimental Comparison of Open Source Vision-Based State Estimation Algorithms , 2016, ISER.

[7]  Francisco Angel Moreno,et al.  A collection of outdoor robotic datasets with centimeter-accuracy ground truth , 2009, Auton. Robots.

[8]  Sergei Vassilvitskii,et al.  k-means++: the advantages of careful seeding , 2007, SODA '07.

[9]  Ryan M. Eustice,et al.  University of Michigan North Campus long-term vision and lidar dataset , 2016, Int. J. Robotics Res..

[10]  Paul Newman,et al.  1 year, 1000 km: The Oxford RobotCar dataset , 2017, Int. J. Robotics Res..

[11]  Takeo Kanade,et al.  Visual topometric localization , 2011, 2011 IEEE Intelligent Vehicles Symposium (IV).

[12]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[13]  John J. Leonard,et al.  Past, Present, and Future of Simultaneous Localization and Mapping: Toward the Robust-Perception Age , 2016, IEEE Transactions on Robotics.

[14]  Daniel Cremers,et al.  Direct Sparse Odometry , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Domenico G. Sorrenti,et al.  Rawseeds : Building a Benchmarking Toolkit for Autonomous Robotics , 2014 .

[16]  Davide Scaramuzza,et al.  A Benchmark Comparison of Monocular Visual-Inertial Odometry Algorithms for Flying Robots , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[17]  Andreas Geiger,et al.  Efficient Large-Scale Stereo Matching , 2010, ACCV.

[18]  Roland Siegwart,et al.  The EuRoC micro aerial vehicle datasets , 2016, Int. J. Robotics Res..

[19]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[20]  Wenbin Li,et al.  InteriorNet: Mega-scale Multi-sensor Photo-realistic Indoor Scenes Dataset , 2018, BMVC.

[21]  Kostas Daniilidis,et al.  PennCOSYVIO: A challenging Visual Inertial Odometry benchmark , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[22]  Daniel Cremers,et al.  A Photometrically Calibrated Benchmark For Monocular Visual Odometry , 2016, ArXiv.

[23]  Davide Scaramuzza,et al.  The Zurich urban micro aerial vehicle dataset , 2017, Int. J. Robotics Res..

[24]  Jürgen Sturm,et al.  Evaluating Egomotion and Structure-from-Motion Approaches Using the TUM RGB-D Benchmark , 2012 .

[25]  Niko Sünderhauf,et al.  Are We There Yet? Challenging SeqSLAM on a 3000 km Journey Across All Four Seasons , 2013 .

[26]  Michael Gassner,et al.  SVO: Semidirect Visual Odometry for Monocular and Multicamera Systems , 2017, IEEE Transactions on Robotics.

[27]  Yipu Zhao,et al.  Good Feature Matching: Toward Accurate, Robust VO/VSLAM With Low Latency , 2020, IEEE Transactions on Robotics.

[28]  Yipu Zhao,et al.  Good Feature Selection for Least Squares Pose Optimization in VO/VSLAM , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[29]  Francisco Angel Moreno,et al.  The Málaga urban dataset: High-rate stereo and LiDAR in a realistic urban scenario , 2014, Int. J. Robotics Res..

[30]  Winston Churchill,et al.  The New College Vision and Laser Data Set , 2009, Int. J. Robotics Res..

[31]  Jörg Stückler,et al.  The TUM VI Benchmark for Evaluating Visual-Inertial Odometry , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[32]  Gordon Wyeth,et al.  SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights , 2012, 2012 IEEE International Conference on Robotics and Automation.

[33]  Steffen Urban,et al.  LaFiDa - A Laserscanner Multi-Fisheye Camera Dataset , 2017, J. Imaging.

[34]  Michael F. P. O'Boyle,et al.  SLAMBench2: Multi-Objective Head-to-Head Benchmarking for Visual SLAM , 2018, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[35]  Yipu Zhao,et al.  Low-latency Visual SLAM with Appearance-Enhanced Local Map Building , 2019, 2019 International Conference on Robotics and Automation (ICRA).