Toward an Expressive Bipedal Robot: Variable Gait Synthesis and Validation in a Planar Model

[1]  Alireza Ramezani,et al.  Feedback Control Design for MARLO, a 3D-Bipedal Robot. , 2013 .

[2]  Silvia Rossi,et al.  Socially Assistive Robot for Providing Recommendations: Comparing a Humanoid Robot with a Mobile Application , 2018, International Journal of Social Robotics.

[3]  Christopher G. Atkeson,et al.  Optimization based full body control for the atlas robot , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[4]  Shishir Kolathaya,et al.  Human-Inspired Walking in AMBER 1 . 0 and AMBER 2 . 0 , 2013 .

[5]  Amy LaViers,et al.  Influence of Environmental Context on Recognition Rates of Stylized Walking Sequences , 2017, ICSR.

[6]  Hong Cheng,et al.  Optimisation of Reference Gait Trajectory of a Lower Limb Exoskeleton , 2016, Int. J. Soc. Robotics.

[7]  John T. Betts,et al.  Practical Methods for Optimal Control and Estimation Using Nonlinear Programming , 2009 .

[8]  Tolga K. Çapin,et al.  Style-based biped walking control , 2018, The Visual Computer.

[9]  KangKang Yin,et al.  SIMBICON: simple biped locomotion control , 2007, ACM Trans. Graph..

[10]  Takeo Kanade,et al.  Footstep Planning for the Honda ASIMO Humanoid , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[11]  I. Bartenieff,et al.  Body Movement: Coping with the Environment , 1980 .

[12]  Amy LaViers,et al.  Modeling the Interactions of Context and Style on Affect in Motion Perception: Stylized Gaits Across Multiple Environmental Contexts , 2019, Int. J. Soc. Robotics.

[13]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[14]  S. Ali Etemad,et al.  Expert-Driven Perceptual Features for Modeling Style and Affect in Human Motion , 2016, IEEE Transactions on Human-Machine Systems.

[15]  Ohung Kwon,et al.  Gait transitions for walking and running of biped robots , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[16]  Miomir Vukobratovic,et al.  Zero-Moment Point - Thirty Five Years of its Life , 2004, Int. J. Humanoid Robotics.

[17]  Arthur D. Kuo,et al.  Choosing Your Steps Carefully , 2007, IEEE Robotics & Automation Magazine.

[18]  Chyi-Yeu Lin,et al.  Humanoid Head Face Mechanism with Expandable Facial Expressions , 2016 .

[19]  Amy LaViers,et al.  Embodied movement strategies for development of a core-located actuation walker , 2016, 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob).

[20]  Jun-Ho Oh,et al.  Design of Android type Humanoid Robot Albert HUBO , 2006, 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[21]  Fumihiko Asano,et al.  Virtual gravity and coupling control for robotic gait synthesis , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[22]  Tad McGeer,et al.  Passive Dynamic Walking , 1990, Int. J. Robotics Res..

[23]  G. Nicholson The Lost Art of Walking: The History, Science, Philosophy, and Literature of Pedestrianism , 2008 .

[24]  Jun Morimoto,et al.  Learning Biped Locomotion , 2007, IEEE Robotics & Automation Magazine.

[25]  Sushant Veer,et al.  Composing limit cycles for motion planning of 3D bipedal walkers , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[26]  Emily S. Cross,et al.  From automata to animate beings: the scope and limits of attributing socialness to artificial agents , 2018, Annals of the New York Academy of Sciences.

[27]  Anil V. Rao,et al.  GPOPS-II , 2014, ACM Trans. Math. Softw..

[28]  Michael I. Jordan,et al.  Optimal feedback control as a theory of motor coordination , 2002, Nature Neuroscience.

[29]  Anil V. Rao,et al.  Practical Methods for Optimal Control Using Nonlinear Programming , 1987 .

[30]  Martijn Wisse,et al.  A Three-Dimensional Passive-Dynamic Walking Robot with Two Legs and Knees , 2001, Int. J. Robotics Res..

[31]  Fazel Naghdy,et al.  Automatic Affect Perception Based on Body Gait and Posture: A Survey , 2017, International Journal of Social Robotics.

[32]  Simon Garnier,et al.  Visual attention and the acquisition of information in human crowds , 2012, Proceedings of the National Academy of Sciences.

[33]  Atsuo Takanishi,et al.  Development of Expressive Robotic Head for Bipedal Humanoid Robot with Wide Moveable Range of Facial Parts, Facial Color , 2013 .

[34]  Jessy W. Grizzle,et al.  From 2D Design of Underactuated Bipedal Gaits to 3D Implementation: Walking With Speed Tracking , 2016, IEEE Access.

[35]  Gentiane Venture,et al.  Recognizing Emotions Conveyed by Human Gait , 2014, International Journal of Social Robotics.

[36]  J. Cutting,et al.  Recognizing friends by their walk: Gait perception without familiarity cues , 1977 .

[37]  Masahiro Fujita,et al.  A small biped entertainment robot exploring attractive applications , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[38]  Bernard Espiau,et al.  Limit Cycles in a Passive Compass Gait Biped and Passivity-Mimicking Control Laws , 1997, Auton. Robots.

[39]  E. Westervelt,et al.  Feedback Control of Dynamic Bipedal Robot Locomotion , 2007 .

[40]  Martijn Wisse,et al.  Passive-Based Walking Robot , 2007, IEEE Robotics & Automation Magazine.

[41]  Pierre Blazevic,et al.  Mechatronic design of NAO humanoid , 2009, 2009 IEEE International Conference on Robotics and Automation.

[42]  Koushil Sreenath,et al.  MABEL, a new robotic bipedal walker and runner , 2009, 2009 American Control Conference.

[43]  James W. Davis,et al.  Visual Categorization of Children and Adult Walking Styles , 2001, AVBPA.

[44]  Benoit Thuilot,et al.  Compass-Like Biped Robot Part I : Stability and Bifurcation of Passive Gaits , 1996 .

[45]  Ana Paiva,et al.  Empathic Robots for Long-term Interaction , 2014, Int. J. Soc. Robotics.

[46]  C. Breazeal Sociable Machines: Expressive Social Ex-change Between Humans and Robots , 2000 .

[47]  Martijn Wisse,et al.  System overview of bipedal robots Flame and TUlip: Tailor-made for Limit Cycle Walking , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[48]  R. Blake,et al.  Perception of human motion. , 2007, Annual review of psychology.

[49]  Lilly Irani,et al.  Amazon Mechanical Turk , 2018, Advances in Intelligent Systems and Computing.

[50]  Jimmy Or,et al.  Computer Simulations of a Humanoid Robot Capable of Walking Like Fashion Models , 2012, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[51]  Nicole C. Krämer,et al.  The Effects of Humanlike and Robot-Specific Affective Nonverbal Behavior on Perception, Emotion, and Behavior , 2018, International Journal of Social Robotics.

[52]  Aaron D. Ames,et al.  3D dynamic walking with underactuated humanoid robots: A direct collocation framework for optimizing hybrid zero dynamics , 2016, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[53]  Jaap Ham,et al.  Representing Affective Facial Expressions for Robots and Embodied Conversational Agents by Facial Landmarks , 2013, Int. J. Soc. Robotics.

[54]  Chandana Paul,et al.  Low-bandwidth reflex-based control for lower power walking: 65 km on a single battery charge , 2014, Int. J. Robotics Res..

[55]  B. de Gelder,et al.  Body expressions influence recognition of emotions in the face and voice. , 2007, Emotion.

[56]  Aaron D. Ames,et al.  A human-inspired framework for bipedal robotic walking design , 2014 .

[57]  Dan B. Marghitu,et al.  Rigid Body Collisions of Planar Kinematic Chains With Multiple Contact Points , 1994, Int. J. Robotics Res..

[58]  Hiroshi Ishiguro,et al.  Evaluating facial displays of emotion for the android robot Geminoid F , 2011, 2011 IEEE Workshop on Affective Computational Intelligence (WACI).

[59]  Atsuo Takanishi,et al.  Development of expressive robotic head for bipedal humanoid robot , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[60]  Monique Dittrich,et al.  The Influence of a Social Robot's Persona on How it is Perceived and Accepted by Elderly Users , 2016, ICSR.

[61]  Kerstin Eder,et al.  Believing in BERT: Using expressive communication to enhance trust and counteract operational error in physical Human-robot interaction , 2016, 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN).

[62]  J. Grizzle,et al.  Poincare's method for systems with impulse effects: application to mechanical biped locomotion , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).